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Abstract

We prove old and new results on cardinal characteristics of the generalized Baire

space κκ. The first part of this thesis consists of a detailed exposition of important

classical results on the characteristics s(κ) and b(κ) – the generalized splitting and

bounding numbers, respectively. More concretely, we prove that the characteristics

s(ω) and b(ω) are independent and that, in stark contrast, s(κ) ≤ b(κ) is provable in

ZFC for uncountable κ. We further show how the value of s(κ) is linked to two large

cardinal assumptions on κ.

In the second part, we prove new results for s(κ) and b(κ) and, in particular,

for the characteristic sp(t(κ)) – the generalized tower spectrum. These new results

are mainly concerned with controlling cardinal characteristics globally, i.e., at many

regular cardinals κ simultaneously. We first show how to force s(κ) < b(κ) at many

strongly unfoldable cardinals κ simultaneously, based on previous work by Bağ and

Fischer. In the main chapter, we prove that both small and large generalized tower

spectra at all regular κ simultaneously are consistent and that globally, a small tower

spectrum is consistent with an arbitrarily large spectrum of maximal almost disjoint

families. Finally, we show the consistency of any non-trivial upper bound on sp(t(κ)).
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Chapter 1

Introduction

1.1 Overview

The study of cardinal characteristics of the continuum dates back to at least the

beginning of the 20th century and is a cornerstone in the development of set theory.

A cardinal characteristic of the continuum is a cardinal lying between ω1 and 2ω that

captures some combinatorial or topological property of the reals, where the term the

reals refers to a handful of spaces besides the real line R. Here, we mean either the

set of infinite subsets of natural numbers – the set [ω]ω – or the set of functions from

the naturals to themselves – the Baire space ωω. For notational convenience, we

will speak of cardinal characteristics of ωω. Usually, such a cardinal characteristic is

defined as the minimal cardinality of an object in ωω that does not share a certain

specified property of countable objects in ωω.

One can of course go beyond the continuum and consider not just the space
ωω, but the generalized Baire space κκ, where κ is any regular infinite cardinal.

Again, the term κ-real refers both to an element of the set κκ or to an element of

[κ]κ. As compared to the study of cardinal characteristics of the continuum, research

on cardinal characteristics of κκ has emerged relatively recently. Its inception, in

the 1990’s, can be seen in the work on the generalized splitting number s(κ) by

Motoyoshi [31], Kamo [27], Suzuki [38] and Zapletal [40] and in the work of Cummings

and Shelah [11] on the generalized bounding and dominating numbers b(κ) and d(κ).

We begin by formally defining these and the other generalized cardinal characteristics

relevant in this thesis.
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Definition 1.1. Let κ be a regular infinite cardinal. For f, g ∈ κκ, we define f ≤∗ g :

⇐⇒ |{η ∈ κ : g(η) < f(η)}| < κ. For a, b ∈ [κ]κ, we define a ⊆∗ b : ⇐⇒ |a \ b| < κ.

(i) A subset B ⊆ κκ is an unbounded family iff there does not exist f ∈ κκ such that

for all g ∈ B : g ≤∗ f . Let b(κ) := min{|B| : B ⊆ κκ is an unbounded family}
be the κ-bounding number.

(ii) A subset D ⊆ κκ is a dominating family iff for all f ∈ κκ there exists g ∈ D
such that f ≤∗ g. Let d(κ) := min{|D| : D ⊆ κκ is a dominating family} be the

κ-dominating number.

(iii) A subset S ⊆ [κ]κ is a splitting family iff for all a ∈ [κ]κ there exists b ∈ S such

that |a ∩ b| = |a \ b| = κ. Let s(κ) := min{|S| : S ⊆ [κ]κ is a splitting family}.
If κ = ω, we will usually omit the parentheses in the names of cardinal characteristics,

i.e., we will write b instead of b(ω).

Note that the property of being an unbounded, dominating or splitting family is

closed under taking supersets. This is not the case for the main combinatorial objects

studied in this thesis, which are towers. For these, as well as for MAD-families, which

will appear in multiple cameos, it thus makes sense to not just consider the minimal

cardinality of which these objects exists, but all such cardinalities, which we call their

spectrum.

Definition 1.2. Let κ ≤ λ be regular cardinals. We call a sequence 〈aξ : ξ ∈ λ〉,
where aξ ∈ [κ]κ, a κ-tower of height λ iff

(i) For all ξ < ξ′ < λ : aξ ⊇∗ aξ′ .

(ii) There does not exist an a ∈ [κ]κ with ∀ξ < λ : aξ ⊇∗ a (no pseudo-intersection).

Let sp(t(κ)) := {λ : there exists a κ-tower of height λ} be the κ-tower spectrum and

t(κ) := min(sp(t(κ))) the κ-tower number.

Note that this definition excludes towers of non-regular length and of length <κ,

i.e., sp(t(κ)) is a set of regular cardinals above κ. This is of course no real restriction

since we can always extract a cofinal subsequence from any ordinal-height tower.

Conversely, we can always artificially extend a tower as in the definition to an ordinal-

height tower by repeating elements. The requirement that λ ≥ κ is a consequence of

the following pathology that only arises in the higher Baire spaces:

Fact 1.1. Let κ be regular and uncountable. Decompose κ as κ :=
!

n∈ω Xn, where

each Xn has cardinality κ. Then the family {
!

m≥n Xm : n ∈ ω} is well-ordered by

⊇∗ and has no pseudo-intersection.
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We will also study a more restrictive generalization of towers to the higher Baire

spaces, namely club-towers. Following standard terminology, we say that c ∈ [κ]κ is

a club iff c contains all of its limit points in κ in the order topology, i.e., iff for all

α ∈ κ : 0 ∕= sup(α ∩ c) ∈ κ =⇒ sup(α ∩ c) ∈ c.

Definition 1.3. A κ-club-tower is a tower 〈cξ : ξ ∈ λ〉 such that each cξ is a

club subset of κ. Let sp(tcl(κ)) := {λ : there exists a κ-club-tower of height λ} and

tcl(κ) := min(sp(tcl(κ))).

Lastly, we define the generalized MAD-families mentioned above.

Definition 1.4. A family A ⊆ [κ]κ is almost disjoint iff for all a ∕= b ∈ A : |a∩b| < κ.

Furthermore, A is maximal almost disjoint (κ-MAD) if A is not properly contained in

a different almost disjoint family. Let sp(a(κ)) := {δ : there exists a κ-MAD family A
with κ ≤ |A| = δ ≤ 2κ} be the κ-MAD spectrum and a(κ) := min(sp(a(κ))) the κ-

maximal almost disjointness number.

While Cummings and Shelah [11] showed that the behaviour of the two charac-

teristics b(κ) and d(κ) mirrors that of their classical counterparts, the value of the

generalized splitting number turned out to be linked to various large cardinal assump-

tions on κ: Motoyoshi [31] showed that s(κ) ≥ κ is equivalent to κ being strongly

inaccessible, and by a result due to Suzuki [38], s(κ) ≥ κ+ is equivalent to κ being

weakly compact.1 Groundbreaking later work by Raghavan and Shelah [32] estab-

lished that even under such assumptions, the behaviour of the generalized splitting

number differs substantially from that of its classical variant. More precisely, s and

b are known to be independent, i.e., both s < b and b < s are consistent with ZFC,

where the first inequality is due to Baumgartner and Dordal [3] and the second orig-

inally to Shelah [36]. In contrast, for uncountable κ, Raghavan and Shelah showed

that s(κ) ≤ b(κ) is provable in ZFC. An in-depth exposition of these classical results

is the topic of Chapter 2 of this thesis.

Further differences between the combinatorics of ωω and those of κκ for uncount-

able κ emerged: Blass, Hyttinen and Zhang [5] proved that if d(κ) equals κ+, then so

does the characteristic a(κ). In contrast, the question whether d = ω1 implies a = ω1

is open since the 1970’s. Raghavan and Shelah [33] improved the above result and

showed that actually, b(κ) = κ+ implies a(κ) = κ+ for uncountable κ. Fischer and

1Moreover, Zapletal [40] showed that the existence of a regular uncountable κ with s(κ) ≥ κ++

has greater consistency strength than the existence of a measurable cardinal.
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Soukup established further ZFC inequalities between generalized cardinal character-

istics in [18]. Additional recent work on cardinal characteristics of κκ can be found

in [9], [19], [15] and [7].

Generalizing cardinal characteristics to the higher Baire spaces suggests an ob-

vious line of inquiry: Can these characteristics be controlled globally, i.e., in all

Baire spaces simultaneously? This question can be seen as building upon Easton’s

famous theorem [14] from the 1960’s, showing that the class function κ → 2κ on

regular κ is essentially independent of ZFC, apart from the obvious restriction that

κ < κ′ =⇒ 2κ ≤ 2κ
′
and that cf(2κ) > κ. The first such global result for cardinal

characteristics other than 2κ is Cummings’ and Shelah’s proof [11] that the class func-

tion κ → (b(κ), d(κ), 2κ) can be controlled globally, subject to obvious restrictions

that mirror the situation at ω, namely,

κ < b(κ) = cf(b(κ)) ≤ cf(d(κ)) ≤ d(κ) ≤ 2κ,

and with the same conditions on 2κ as in Easton’s Theorem.

Our first new result, the topic of Chapter 3, concerns the global separation of s(κ)

and b(κ). Since s(κ) is generally smaller than κ by the above discussion and since, by

the same argument as in the countable case, κ+ ≤ b(κ), such a separation is really only

interesting if κ is weakly compact. We generalize a result by Bağ and Fischer [1] and

show that s(κ) = κ+ < b(κ) is consistent simultaneously for a large class of so-called

strongly unfoldable cardinals κ. Strongly unfoldable cardinals, originally introduced

by Villaveces [39], generalize weakly compact cardinals. The reason for working under

the strong-unfoldability assumption instead of the weak-compactness assumption –

the former having greater consistency strength than the latter – is that we need to

ensure that the forcing extension separating s(κ) and b(κ) does not destroy the weak

compactness of κ. This is achieved via an indestructibility result by Johnstone [26],

allowing us to make strongly unfoldable cardinals indestructible by certain forcing

extensions.

The main new results and the focus of this thesis are found in Chapter 4 and deal

with the generalized tower spectrum. The ω-tower spectrum has been well-studied

for many decades, for example by Hechler [23], by Baumgartner and Dordal [3] or

by Dordal [12]. In particular, Hechler [23] showed that consistently, there exists an

ω-tower of height λ for each regular ω1 ≤ λ ≤ 2ω. Dordal [12, Corollary 2.6] showed

that for any set A of regular cardinals containing all of its regular limit points and

the successors of its singular limit points, it is consistent that sp(t(ω)) = A.
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The generalized tower number t(κ) on the other hand was first investigated by

Shelah and Spasejović [37]. They showed that t(κ) ≤ b(κ) for all regular κ and

that κ ≤ λ < t(κ) implies 2λ = 2κ. Moreover, they proved that for all τ, β, µ with

κ < τ ≤ β ≤ µ, such that τ and β are regular and cf(µ) ≥ τ , it can be forced

that t(κ) = τ , b(κ) = β and 2κ = µ. Garti [20] and Fischer et al. [17] investigated

whether t(κ) equals the generalized pseudo-intersection number p(κ) for uncountable

κ, which in the case κ = ω is a famous result due to Malliaris and Shelah [30].

In its full generality, this problem remains unsolved.2 Further research on the κ-

tower number was conducted by Ben-Neria and Garti [4], who proved that for a

supercompact κ and for κ < τ = cf(τ) ≤ σ = cf(σ) ≤ µ with cf(µ) > κ, it is

consistent that t(κ) = τ , s(κ) = σ and 2κ = µ. Finally, Schilhan [35] observed

that for all regular uncountable κ, the characteristic tcl(κ) equals b(κ), which implies

that b(κ) ∈ sp(t(κ)), an important cornerstone for the line of research central to this

thesis.

It is folklore that there are no ω-towers of height greater than ω1 in the Cohen

model, which follows from a straightforward isomorphism-of-names argument. We

generalize this result and show that in the Easton model, where the class function

κ → 2κ can be controlled, the κ-tower spectrum equals {κ+} for all regular κ simul-

taneously. We further show that globally, these small generalized tower spectra are

consistent with arbitrarily large generalized MAD spectra, based on previous work

by Bağ, Fischer and Friedman [2].

On the other hand, we prove that arbitrarily large tower spectra in all the Baire

spaces simultaneously are consistent. In fact, we show that it is consistent that there

exists a κ-club-tower of height λ for all regular κ < λ ≤ 2κ, where we again have

global control over the value of 2κ.

Finally, we prove that for a fixed regular κ, any upper bound on the κ-tower

spectrum is consistent. More concretely, for every regular β > κ and µ with cf(µ) ≥ β,

it is consistent that b(κ) = β, 2κ = d(κ) = µ, and there are no κ-towers of height

greater than β. By Schilhan’s result [35] mentioned above, this upper bound is tight

for uncountable κ. In case κ = ω, the bound is usually also tight, except in the edge

case β = µ, which will follow from a result in Chapter 2.

These results on the generalized tower spectrum are set to appear in the Journal

of Symbolic Logic.

2Garti showed that if κ<κ = κ and either p(κ) = κ+ or cf(2κ) ∈ {κ+,κ++}, then p(κ) = t(κ).

Fischer et al. showed that if κ<κ = κ, then either p(κ) = t(κ), or there exists a λ < p(κ) and a

club-supported (p(κ),λ)-gap of slaloms.
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1.2 Preliminaries

Combinatorics: As explained previously, a club in κ is a closed unbounded subset

of κ. A subset of κ is stationary iff it has nonempty intersection with every club in

κ. It is well-known that the intersection of fewer than κ many clubs in κ is a club

(cf. [25, Theorem 8.3]) and that for any f ∈ κκ, the set {α ∈ κ : f [α] ⊆ α} is a club.

More generally, a function h : ω → ω is called normal iff h is strictly increasing and

for every limit ordinal γ : h(γ) = sup{h(α) : α ∈ γ}. Normal functions have a club

set of fixed-points:

Fact 1.2 (Fixed-point Lemma for normal functions, cf. [25, Ex. 8.1]). Let h ∈ κκ be

normal. Then the set {α ∈ κ : h(α) = α} is a club in κ.

The following combinatorial lemma is used frequently in this thesis

Fact 1.3 (∆-system Lemma, cf. [29, Theorem 1.6]). Let δ be an infinite cardinal and

let λ > δ be regular and such that ∀α < λ : α<δ < λ. Then, for any A of cardinality

≥λ satisfying ∀X ∈ A : |x| < δ, there exists some A′ ⊆ A of cardinality λ and a root

R such that ∀X ∕= Y ∈ A′ : X ∩ Y = R.

Forcing: We follow the convention that stronger forcing conditions are smaller,

i.e., p ≤P q reads ”p is stronger than q” or ”p extends q”. We say that a forcing

notion P satisfies the κ-chain condition (κ-c.c.) iff antichains in P have cardinality

<κ. The countable chain condition (c.c.c.) is the ω1-c.c.. Likewise, P is κ-closed iff

descending sequences in P of length <κ have a lower bound. We denote P-names by

ẋ and canonical P-names for sets in the ground model by x̌. If there is no danger of

confusion, we write just x for the canonical P-name for x in the ground model.

For forcing notions P and Q, an embedding i : P → Q is a complete embedding iff

for every maximal antichain A in P, i[A] is a maximal antichain in Q. Equivalently, i

preserves incompatibility and for every q ∈ Q, there exists p ∈ P – a reduction of q to

P – such that ∀p′ ≤P p : i(p′) and q are compatible in Q. If P ⊆ Q and the inclusion

map is a complete embedding, we say that P is a complete suborder of Q.

For a complete suborder P ⊆ Q and a Q generic filter H over the ground model V,

the filterH∩P is P-generic overV. If, on the other hand, G is P-generic overV, we de-

fine in V[G] the quotient forcing Q/G := {q ∈ Q : ∀p ∈ G : p and q are compatible}.
Note that Q is then forcing equivalent to P ∗Q/Ġ, where Q/Ġ is a P-name for Q/G.

If ẋ is a Q-name in the ground model V, there is a Q/G name ẋ/G ∈ V[G] – the
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quotient name of ẋ – such that for any H that is Q/G-generic over V[G] : V[G][H] |=
(ẋ/G)[H] = ẋ[G ∗H].

If 〈〈Pξ : ξ ≤ α〉, 〈Q̇ξ : ξ < α〉〉 is an α-stage iterated forcing construction and G

is a Pα-generic filter, we denote by G|β the Pβ-generic filter {p|β : p ∈ G}. We often

use the following well-known fact.

Fact 1.4 ([29, Lemma 5.14]). Denote by V the ground model. Assume that α a limit

ordinal and that 〈〈Pξ : ξ ≤ α〉, 〈Q̇ξ : ξ < α〉〉 an α-stage iterated forcing with supports

in some ideal I, such that each element of I is bounded in α. If G is Pα-generic over

V and S ∈ V is such that V[G] |= |S| < cf(α), then, for any X ∈ V[G] with X ⊆ S,

there exists β ∈ α such that X ∈ V[G|β].

We denote the support of some Pα-condition p by supp(p). We use finite support

iterations, and, more generally, <κ-support iterations throughout this thesis. For the

global results, we use Easton supports: Pα is an Easton support iteration or product

iff for every regular cardinal γ ≤ α and every p ∈ Pα : |supp(p) ∩ γ| < γ.3

Elementary Submodels: Recall that a set model M is an elementary submodel

of N ⊇ M , written M ≺ N , iff for every formula ϕ(x1, ..., xn) and any a1, ..., an ∈ M ,

we have M |= ϕ(a1, ..., an) ⇐⇒ N |= ϕ(a1, ..., an). An embedding j : (M,∈) →
(N,∈) is an elementary embedding iff j[M ] ≺ N . Note that for transitive M,N , an

elementary embedding j : M → N must map ordinals to ordinals, and if j ∕= idM ,

there exists a least ordinal δ – the critical point of j – such that j(δ) > δ.

For an infinite cardinal θ, denote by Hθ the set {x : |trcl(x)| < θ}, where trcl(x)

is the transitive closure of x. We will frequently use the Löwenheim-Skolem Theorem

on H = Hθ in this thesis, in the following form.

Fact 1.5 (Löwenheim-Skolem Theorem). Let H be an infinite set model and A ⊆ H

an infinite subset. There exists A ⊆ M ⊆ H such that |M | = |A| and M ≺ H.

Large Cardinals: As explained in the overview, we will encounter a few large

cardinals in this thesis, mainly in connection with the generalized splitting number.

More concretely, the large cardinal properties we encounter are strong inaccessibility,

3Note that this is not the traditional definition of the Easton support. Usually, the condition is

that |supp(p)∩γ| < γ for regular limit cardinals γ. However, in this thesis, all the iterations/products

we consider force nontrivially only at stages that are cardinals, which makes the two definitions

equivalent.
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weak compactness and strong unfoldability, the last of which we will introduce in

Chapter 3, where we need it.

Definition 1.5. A cardinal κ is strongly inaccessible iff κ is regular uncountable and

for every λ < κ : 2λ < κ.

Definition 1.6. A cardinal κ is weakly compact iff for every coloring π : [κ]2 → 2,

there exists some A ∈ [κ]κ such that π|[A]2 is constant.

An equivalent definition of weak compactness is given using the tree property,

which may be viewed as a higher analogue of König’s Lemma.

Definition 1.7. A tree is a partially ordered set 〈T,<T 〉 such that for each x ∈ T ,

the set {y ∈ T : y <T x} is well-ordered by <T . The α’th level of T is the set

{x ∈ T : {y ∈ T : y <T x} has order type α}. The height of T is the least α for

which the α’th level of T is empty. A branch of T is a maximal linearly ordered subset

of T . Finally, a cardinal κ has the tree property iff every tree of height κ whose levels

have cardinality <κ has a branch of cardinality κ.

Fact 1.6 (cf. [25, Lemma 9.9, Lemma 9.26]). κ is weakly compact if and only if it is

strongly inaccessible and has the tree property.
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Chapter 2

Generalized Splitting and

Bounding: Classical Results

2.1 The Characteristics s and b

2.1.1 The Consistency of s < b

The main goal of this first subsection is to construct a model in which s = ω1 < b = λ,

where λ is any regular uncountable cardinal. This result is due to Baumgartner and

Dordal [3]. Importantly, it also establishes a fact about ω-towers that will become

relevant in later chapters. More concretely, Baumgartner and Dordal use a λ-stage

finite support iteration of Hechler forcing, thus increasing b while preserving a certain

splitting family of cardinality ω1. This construction will be an edge case of the non-

linear iteration of generalized Hechler forcing we use in Chapter 4 in order to bound

the κ-tower spectrum from above (Theorem 4.4). We begin by defining the classical,

single-stage Hechler forcing.

Definition 2.1. Denote by <ωω↑ the set {s ∈ <ωω : s is strictly increasing} and

define ωω↑ analogously. Hechler forcing D consists of conditions 〈s, f〉, where s ∈
<ωω↑, f ∈ ωω↑ and

〈s, f〉 ≤ 〈s′, f ′〉 : ⇐⇒ s ⊇ s′ and f ≥ f ′ and ∀n ∈ dom(s) \ dom(s′) : s(n) > f ′(n).

It is clear that for every D-generic filter G, the real g :=
!
{s : ∃f 〈s, f〉 ∈ G}

eventually dominates every ground model real. Furthermore, D satisfies the c.c.c.

since conditions with the same first coordinate are compatible. The central ingredient
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we use in this subsection is the fact that iterations of D preserve certain splitting

families. More precisely, we show that eventually narrow sequences are preserved,

which implies the preservation of both eventually splitting sequences as well as of

towers.

Definition 2.2. A sequence 〈aξ : ξ ∈ λ〉 with aξ ∈ [ω]ω is

(i) eventually splitting iff

∀a ∈ [ω]ω ∃ξ ∈ λ ∀η ≥ ξ : |a ∩ aη| = |a \ aη| = ω,

(ii) eventually narrow iff

∀a ∈ [ω]ω ∃ξ ∈ λ ∀η ≥ ξ : a ⊈∗ aη.

Note that 〈aξ : ξ ∈ λ〉 is eventually splitting iff 〈bξ : ξ ∈ λ〉 is eventually narrow,

where b2ξ = aξ and b2ξ+1 = ω \ aξ. If 〈aξ : ξ ∈ λ〉 is well-ordered by ⊇∗ and λ

is regular, it is a tower iff it is eventually narrow. Therefore, it suffices to show

that iterations of D preserve eventually narrow sequences in order to establish the

preservation of eventually splitting sequences and towers. Core to the argument that

this preservation holds for iterations of D is the fact that open dense subsets of D
induce a certain rank function on <ωω↑.

Definition 2.3. Let D be an open dense subset of D. Define by induction the

following sequence 〈Dα : α ∈ ω1〉 in <ωω↑:
D0 := {t ∈ <ωω↑ : ∃f 〈t, f〉 ∈ D}
Dα+1 := {t ∈ <ωω↑ :

(i) Either t ∈ Dα, or

(ii) ∃l > dom(t) ∃{tk : k ∈ ω} ⊆ Dα : ∀k ∈ ω [t ⊆ tk ∧ dom(tk) = l ∧
tk(dom(t)) > k]}

Dα :=
!

β∈α Dβ if α is a limit ordinal.

Note that due to condition (i), the sequence 〈Dα : α ∈ ω1〉 is increasing with

respect to inclusion. Therefore, since <ωω↑ is countable, there must be a γ0 ∈ ω1 such

that the sequence stabilizes at γ0, i.e., Dγ0 = Dγ0+1.

Claim 2.1. Dγ0 =
<ωω↑

Proof. Assume by contradiction that there exists an s ∈ <ωω↑\Dγ0 . We say that t ⊇ s

is a minimal extension of s if t ∈ Dγ0 and for every dom(s) ≤ k < dom(t) : t|k /∈ Dγ0 .
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Subclaim. For every n ∈ ω, there are at most finitely many minimal extensions of s

of length n, i.e., with domain n.

Proof. Assume that there exists some n ∈ ω such that there is an infinite set T of

minimal extensions of s of length n. Note that there is some dom(s) ≤ i < n such

that {t(i) : t ∈ T} is infinite. Let i0 be the least such i. Note that {t|i0 : t ∈ T}
is finite. By the pigeonhole principle, we find some infinite subset T ′ ⊆ T and some

u ∈ <ωω↑ such that for all t ∈ T ′ : t|i0 = u and such that {t(i0) : t ∈ T ′} is still

infinite. We may thus choose {tk : k ∈ ω} ⊆ T ′ such that for all k ∈ ω : tk(i0) > k.

This however implies that u ∈ Dγ0+1 = Dγ0 by condition (ii) in the definition of

Dγ0+1, which contradicts the fact that the sequences in T ′ are minimal extensions.

⊢Subclaim

Let Tn be the finite set of minimal extensions of s of length n. Construct a strictly

increasing function f ∈ ωω such that for all dom(s) ≤ n < ω : f(n) > max{t(n) : t ∈
Tn+1}. Since D is dense in D, there is some 〈t, g〉 ≤ 〈s, f〉 with 〈t, g〉 ∈ D. It follows

that t ⊇ s and that t ∈ D0 ⊆ Dγ. Thus, there is some dom(s) < i ≤ dom(t) such that

t|i is a minimal extension of s. However, this implies that f(i−1) > t|i(i−1) = t(i−1)

by definition of f , which contradicts 〈t, g〉 ≤ 〈s, f〉. ⊢Claim

Hence, for every open dense D ⊆ D, there is a well-defined rank function on <ωω↑,
namely, rankD(s) := min{α ∈ ω1 : s ∈ Dα}.

Proposition 2.1 ([3, Theorem 3.1]). If 〈aξ : ξ ∈ λ〉 with cf(λ) > ω is eventually

narrow in V, then it remains eventually narrow in any D-generic extension of V.

Proof. Assume by contradiction that there exists a D-name ẋ for an infinite subset

of ω and some D-condition p̄ = 〈s̄, f̄〉 such that p̄ ⊩ “∀ξ ∈ λ ∃η > ξ : ẋ ⊆∗ aη”. Let

ḣ be such that ⊩ “ḣ ∈ ωω is the strictly increasing enumeration of ẋ”.

Choose θ large enough so that D ∈ Hθ, and let M be a countable elementary

submodel of Hθ with {D, p̄, ẋ, ḣ} ⊆ M . Since 〈aξ : ξ ∈ λ〉 is eventually narrow in V,

there exists, for every y ∈ [ω]ω ∩M , some ξ ∈ λ such that ∀η ≥ ξ : y ⊈∗ aη. Since

[ω]ω ∩ M is countable and cf(λ) > ω, there is some ξ0 ∈ λ such that ∀η ≥ ξ0 ∀y ∈
[ω]ω ∩M : y ⊈∗ aη. Now, by assumption, p̄ forces the existence of some η > ξ0 such

that ẋ ⊆∗ aη. Thus, there is some strengthening 〈s0, f0〉 ≤ p̄, some η0 ≥ ξ0 and some

n0 ∈ ω such that 〈s0, f0〉 ⊩ “∀j ≥ n0 : j ∈ ẋ =⇒ j ∈ aη0”.

For every t ∈ <ωω↑ and every i ∈ ω, define

Zt(i) := {j ∈ ω : ∀g ∈ ωω↑ ∃q ≤ 〈t, g〉 : q ⊩ ḣ(i) = j}.
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Note that <ωω↑ ⊆ M and Zt(i) is definable from parameters in M , which implies

that all the Zt(i) are elements of M .

Claim 2.2. Let t be such that 〈t, f0〉 ≤ 〈s0, f0〉 and let i ∈ ω. Then Zt(i) ∕= ∅.

Proof. Consider the open dense set D := {q ∈ D : ∃j ∈ ω : q ⊩ “ḣ(i) = j”}. We

prove the claim by induction on rankD(t). If rankD(t) = 0, then there exists g ∈ ωω↑
such that 〈t, g〉 ⊩ ḣ(i) = j for some j ∈ ω. Thus, for any g′ ∈ ωω↑, we can let

g′′ be the pointwise maximum of g and g′ and then 〈t, g′′〉 extends 〈t, g′〉 and forces

”ḣ(i) = j”, which settles this case.

Since Dα =
!

β∈α Dβ if α is a limit ordinal, the rank of t must be a successor

ordinal. Therefore assume that t ∈ Dα+1 \ Dα. By definition of Dα+1, there exists

some set {tk : k ∈ ω} ⊆ Dα of proper extensions of t of length some fixed l, such

that for all k ∈ ω : tk(dom(t)) > k. By elementarity, such a set also exists in M ,

therefore we can assume {tk : k ∈ ω} ∈ M . Note that for k ≥ k0 := f0(l− 1), 〈tk, f0〉
is a stronger condition than 〈t, f0〉 and in particular, 〈tk, f0〉 ≤ 〈s0, f0〉, which implies

by the induction hypothesis that for these k, Ztk(i) ∕= ∅.

Subclaim. There exists some j ∈ ω such that j ∈ Ztk(i) for infinitely many k.

Proof. Assume the contrary. Fix for each k ≥ k0 some jk ∈ Ztk(i), for example the

minimal one. By assumption, J := {jk : k ≥ k0} is infinite, and since J is defined

from parameters in M , we have J ∈ M . Therefore, J ⊈∗ aη0 , which allows us to

fix some k1 ≥ k0 such that jk1 ≥ n0 and jk1 /∈ aη0 . By definition of Ztk1
(i), there

exists q ≤ 〈tk1 , f0〉 with q ⊩ “ḣ(i) = jk1” and therefore q ⊩ “jk1 ∈ ẋ”. However,

q ≤ 〈tk1 , f0〉 ≤ 〈s0, f0〉 and therefore q ⊩ “∀j ≥ n0 : j ∈ ẋ =⇒ j ∈ aη0”, which

implies jk1 ∈ aη0 , a contradiction. ⊢Subclaim

By the subclaim, we can fix j0 ∈ ω and X ∈ [ω]ω such that for all k ∈ X : j0 ∈
Ztk(i). Let g ∈ ωω↑. Fix k ∈ X with k ≥ g(l−1), i.e., 〈tk, g〉 ≤ 〈t, g〉. By assumption,

there exists q ≤ 〈tk, g〉 with q ⊩ “ḣ(i) = j0”, and thus j0 ∈ Zt(i). ⊢Claim

By the above claim, Zs0(i) ∕= ∅ for all i ∈ ω. Therefore, fix for each i ∈ ω some

ji ∈ Zs0(i) (for example the minimal one), and let J ′ = {ji : i ∈ ω}. Note that ji ≥ i

since ji is forced to be the i’th element of ẋ. Thus, J ′ is infinite. Furthermore, since

the Zs0(i) are in M and J ′ is definable from them, we have J ′ ∈ M , and therefore

J ′ ⊈∗ aη0 . Fix ji ≥ n0 with ji /∈ aη0 . There exists q ≤ 〈s0, f0〉 forcing ”ḣ(i) = ji”,

thus ”ji ∈ ẋ”, and finally, since 〈s0, f0〉 ⊩ “∀j ≥ n0 : j ∈ ẋ =⇒ j ∈ aη0”, we obtain

the contradiction q ⊩ “ji ∈ aη0”.
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Theorem 2.1 ([3], Theorem 3.3). Let Dα be the α-stage finite support iteration

of D and 〈aξ : ξ ∈ λ〉 an eventually narrow sequence in the ground model V with

cf(λ) > ω. Then 〈aξ : ξ ∈ λ〉 remains eventually narrow in every Dα-generic extension

of V.

Proof. The proof is by induction on α. If α is a successor ordinal, Proposition 2.1

applies. If α is a limit ordinal with cf(α) > ω, then, for every Dα-generic extension

V[G] and every x ∈ [ω]ω ∩ V[G], x already appears in V[G|β] for some β ∈ α by

Fact 1.4, and the induction hypothesis applies. Therefore, assume cf(α) = ω, and let

〈βn : n ∈ ω〉 be a cofinal sequence in α.

Assume by contradiction that there exists a Dα-generic extension V[G] in which

there is some x ∈ [ω]ω such that ∀ξ ∈ λ ∃η > ξ : x ⊆∗ aη. Let ẋ be a Dα-name for x in

V. In V[G], define the set X := {ξ ∈ λ : ∃pξ ∈ G ∃mξ ∈ ω : pξ ⊩Dα “ẋ \mξ ⊆ aξ”},
which by assumption is cofinal in λ. For each n ∈ ω, define in V[G|βn ] the set

Xn := {ξ ∈ λ : ∃pξ ∈ G|βn ∃mξ ∈ ω : pξ ⊩Dα “ẋ \ mξ ⊆ aξ”}. Since Dα is a finite

support iteration, X =
!

n∈ω Xn, which implies by the pigeonhole principle that there

exists some fixed n ∈ ω such that Xn is cofinal in λ. In V[G|βn ], we again apply the

pigeonhole principle to find some fixed m ∈ ω and some cofinal X ′ ⊆ Xn such that

for all ξ ∈ X ′ : nξ = m.

It follows in V[G|β] that ⊩Dβn,α
“∀ξ ∈ X ′ : ẋ/(G|βn) \m ⊆ aξ”, where Dβn,α is the

quotient Dα/(G|βn) and ẋ/(G|βn) is the quotient name of ẋ in V[G|βn ]. Consequently,

⊩Dβn,α
“ẋ/(G|βn) \m ⊆

"
ξ∈X′ aξ”, which implies in particular that y :=

"
ξ∈X′ aξ is

infinite. However, since X ′ is cofinal, we have ∀ξ ∈ λ ∃η > ξ : y ⊆ aη, contradicting

the fact that 〈aξ : ξ ∈ λ〉 is eventually narrow in V[G|βn ].

Corollary 2.1. Forcing with Dα preserves eventually splitting sequences and towers.

We are now ready to prove the central theorem of this subsection.

Theorem 2.2. Let V |= CH, let λ > ω1 be regular and let G be Dλ-generic over V.

Then,

V[G] |= s = ω1 < b = λ.

Proof. The second equality is easy: Note that every B ⊆ ωω in V[G] of cardinality

δ < λ already appears in V[G|α] for some α < λ, by letting h : δ → ωω be some

enumeration of B and applying Fact 1.4 to the set {〈ξ, n,m〉 ∈ δ × ω × ω : h(ξ)(n) =

m}. Hence, B is eventually dominated by the D-generic real appearing at stage α.1

1Note that B ⊆ V[G|α] instead of B ∈ V[G|α] would suffice, and the former can be obtained by

applying Fact 1.4 directly to each f ∈ B and using the regularity of λ.
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This implies V[G] |= b ≥ λ. The reverse inequality follows because V[G] |= 2ω ≤ λ,

which can be checked by counting nice names for reals.

For the equality s = ω1, we could use the fact that there is an eventually splitting

sequence of length ω1 in V[G|ω1 ] since at every earlier stage of the iteration with

countable cofinality, a Cohen real is added, and Cohen reals are splitting reals. How-

ever, using the fact that the reaping number r is uncountable and by the CH in V,

there is an easier argument.

Lemma 2.1. In V, there is an eventually splitting sequence of length ω1.

Proof. Let 〈xξ : ξ ∈ ω1〉 be an enumeration of [ω]ω in V. For every ζ ∈ ω1, choose

aζ such that aζ splits every xξ for ξ ∈ ζ. This is possible because ζ is countable and

r ≥ ω1, where the reaping number r is the minimal cardinality of a subset of [ω]ω

not split by any single real (cf. [21, Theorem 9.5]). Now, 〈aζ : ζ ∈ ω1〉 is eventually
splitting.

By Corollary 2.1, this eventually splitting sequence is still eventually splitting in

V[G], which shows that V[G] |= s = ω1.

Finally, we prove an additional fact about the λ-stage finite support iteration of

Hechler forcing that will be relevant in later chapters.

Theorem 2.3 ([3, Theorem 4.1]). Let V |= GCH, let λ > ω1 be regular and let G be

Dλ-generic over V. Then, there are no ω-towers of height λ in V[G].

Proof. Assume towards a contradiction that 〈aξ : ξ ∈ λ〉 is an ω-tower in V[G]. For

every α ∈ λ we have V[G|α] |= 2ω < λ, which can be seen by counting nice names

for subsets of ω. Since 〈aξ : ξ ∈ λ〉 is a tower in V[G], there exists for each a ∈ [ω]ω

some ξ(a) < λ such that a ⊈∗ aη for all η ≥ ξ(a). Therefore, by regularity of λ, we

can define in V[G] for every α < λ : f(α) := sup{ξ(a) : a ∈ [ω]ω ∩V[G|α]} < λ. By

the c.c.c. of Dλ, there exists g ∈ V such that g(α) > f(α) for all α ∈ λ.2 Define the

club Cg := {α ∈ λ : g[α] ⊆ α}.

Claim 2.3. The set C := {α ∈ λ : 〈aξ : ξ ∈ α〉 ∈ V[G|α]} contains a club.

Proof. Let Ṫ be a Dλ-name for 〈aξ : ξ ∈ λ〉 in V. For each ξ ∈ λ and n ∈ ω, fix a

maximal antichain in Dλ deciding ”n ∈ Ṫ (ξ)” and let Aξ,n be its subchain consisting

of conditions that force ”n ∈ Ṫ (ξ)”. For each α ≤ λ, let Šα := {〈op(ξ, ǎξ),0〉 : ξ ∈ α},
where ǎξ :=

!
n∈ω{ň} × Aξ,n. Clearly, Šα is a Dλ-name for 〈aξ : ξ ∈ α〉 in V. By

2Let g(α) := sup{β ∈ ω : ∃p ∈ Dλ : p ⊩ f(α) = β}

15



the c.c.c. of Dλ and since λ is regular, each Šα is actually already a Dγ-name for

some γ < λ. Therefore, we can define the function f : λ → λ, f(α) := min{γ ∈ λ :

Šα is a Dγ-name}. Since this is a normal function, the set of its fixed-points is a club

by Fact 1.2, and if f(α) = α, then 〈aξ : ξ ∈ α〉 ∈ V[G|α]. ⊢Claim

It follows that Cg ∩ C contains a club. Since {α ∈ λ : cf(α) = ω1} is stationary,3

we can fix α ∈ λ such that cf(α) = ω1, ∀β ∈ α : g(β) < α and 〈aξ : ξ ∈ α〉 ∈ V[G|α].
It follows that every a ∈ [ω]ω ∩V[G|α] already appears at an earlier stage β < α and

since g(β) < α, a is not a pseudo-intersection of 〈aξ : ξ ∈ α〉. By extracting a cofinal

subsequence of α, 〈aξ : ξ ∈ α〉 is therefore a tower in V[G|α], and thus remains a

tower in V[G] by Corollary 2.1, a contradiction.

2.1.2 The Consistency of b < s

Having established the consistency of s < b, we now prove that the reverse inequality

b < s is consistent as well. This is a result originally due to Shelah [36], who intro-

duced creature forcing to obtain a model in which b = ω1 < s = ω2. We will present

a more general result due to Brendle and Fischer [8], showing that for any regular

uncountable κ < λ, there is a c.c.c. forcing extension in which b = a = κ < s = λ.

This is done using a matrix iteration, a forcing construction originally introduced by

Blass and Shelah [6]. Before defining it, we define the forcing notions it will consist

of and establish some of their relevant properties.

Definition 2.4. Let U be an ultrafilter on ω. Mathias forcing MU consists of condi-

tions 〈a,A〉 ∈ [ω]<ω × U , where max a < minA and

〈a,A〉 ≤ 〈a′, A′〉 : ⇐⇒ a ⊇ a′ and A ⊆ A′ and a \ a′ ⊆ A′.

Since conditions with the same first coordinate are compatible, MU satisfies the

c.c.c.. Furthermore, it is clear that forcing with MU adds a pseudo-intersection of U ,
and thus a real not split by the ground-model reals.

In order to add a MAD-family, we need one half of the forcing notion introduced

by Hechler in [23]. A generalization of this forcing to the higher Baire space will

appear in Chapter 4.

Definition 2.5. For any ordinal γ, MAD-Hechler forcing Aγ consists of conditions

p : Fp × np → 2, where Fp ∈ [γ]<ω and np ∈ ω. Define

q ≤ p : ⇐⇒ q ⊇ p and for all i ∈ nq \ np : |q−1(1) ∩ (Fp × {i})| ≤ 1.
3Take the limit of the first ω1 many elements of a club.
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Lemma 2.2. Aγ satisfies the c.c.c.

Proof. For any uncountable A ⊆ Aγ, there exists n ∈ ω such that np = n for all

p ∈ A, by the pigeonhole principle. By the ∆-system Lemma, we can extract an

uncountable A′ ⊆ A and a root R ∈ [γ]<ω such that Fp ∩ Fq = R for all p ∕= q ∈ A′.

Clearly, the conditions in A′ are pairwise compatible.

For any Aγ-generic G, the family {Aα : α ∈ γ} given by Aα := {i ∈ ω : ∃p ∈ G :

p(α, i) = 1} is almost disjoint by construction. Furthermore, it is maximal almost

disjoint if γ is regular uncountable, which can be checked using the c.c.c. of Aγ.
4

Note that Aγ can be decomposed into a two-step iteration as follows:

Definition 2.6. Let γ < δ, let G be Aγ-generic and let {Aα : α ∈ γ} be the generic

almost disjoint family induced by G. Let A[γ,δ) consist of conditions 〈p,H〉, where
(i) H ∈ [γ]<ω,

(ii) p : Fp × np → 2, with Fp ∈ [δ \ γ]<ω and np ∈ ω.

The order is given by

〈q,K〉 ≤ 〈p,H〉 : ⇐⇒

#
$$%

$$&

q ≤Pδ
p

K ⊇ H

∀α ∈ H ∀β ∈ Fp ∀i ∈ nq \ np : if i ∈ Aα then q(β, i) = 0.

This is clearly isomorphic to the quotient Aδ/G, and thus Aδ decomposes as

Aγ ∗ Ȧ[γ,δ).

The final forcing notion we need in order to define the matrix iteration is the

single stage Hechler forcing D, as defined in Definition 2.1 in the previous subsection.

The matrix iteration will be a system of the form

〈〈Pα,ζ : α ≤ κ, ζ ≤ λ〉, 〈Q̇α,ζ : α ≤ κ, ζ < λ〉〉,

where for each α ≤ κ, the subsystem 〈〈Pα,ζ , ζ ≤ λ〉, 〈Q̇α,ζ : ζ < λ〉〉 is a linear finite

support iteration. Moreover, this will be done in such a way that for each ζ ≤ λ and

all β < α ≤ κ, the forcing notion Pβ,ζ is a complete suborder of Pα,ζ .

More concretely, we first fix some surjection f : {η ∈ λ : η ≡ 1 mod 2} → κ such

that f−1(α) is cofinal in λ for every α ∈ κ. For a Pα,ζ-generic G, we will denote by

Vα,ζ the forcing extension V[G]. The matrix iteration will be inductively defined as

follows:
4The skeptical reader is encouraged to consult the proof of Proposition 4.1, where the relevant

argument is presented in the context of a different forcing notion.
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(i) ζ = 0: For every α ≤ κ, Pα,0 := Aα. Thus, forcing with Pα,0 will add an almost

disjoint family {Aβ : β ∈ α} that is MAD for regular uncountable α. Note that

since Aα decomposes as Aβ ∗ Ȧ[β,α), Pβ,0 will indeed by a complete suborder of

Pα,0.

(ii) ζ = η+1, ζ ≡ 1 mod 2: Pα,ζ := Pα,η ∗Q̇α,η, where Q̇α,η is a Pα,η-name for MU̇α,η
,

for U̇α,η a Pα,η-name for a yet to be defined ultrafilter. This ultrafilter will be

chosen carefully in order to realize two objectives: Making Pβ,ζ a complete

suborder of Pα,ζ for all β < α ≤ κ, and establishing the preservation of the

MAD-family {Aβ : β ∈ κ} added by Pκ,0. The construction of such an ultrafilter

will occupy the bulk of the proof.

(iii) ζ = η + 1, ζ ≡ 0 mod 2: Again Pα,ζ := Pα,η ∗ Q̇α,η. Here, Q̇α,η is a Pα,η-name

for the trivial forcing notion if α ≤ f(η). If α > f(η), Q̇α,η is a Pα,η-name for

DVf(η),η .

(iv) ζ is a limit ordinal: For every α ≤ κ, Pα,ζ is the finite support iteration

〈〈Pα,η, η ≤ ζ〉, 〈Q̇α,η : η < ζ〉〉.

Preserving a MAD Family: In order to establish the preservation of MAD-

families mentioned in (ii), we define the following property and prove a series of

lemmas for it.

Definition 2.7. Let M ⊆ N be models of ZFC. Furthermore, let B = {Bα : α ∈
γ} ⊆ [ω]ω ∩M and A ∈ [ω]ω ∩N. We say that property

'
∗ M,N

B,A
(
holds iff for every

h : ω× [γ]<ω → ω with h ∈ M and for every m ∈ ω, there exists n ≥ m and F ∈ [γ]<ω

such that

[n, h(n, F )) \
)

α∈F

Bα ⊆ A.

Lemma 2.3. Let M, N, B = {Bα : α ∈ γ} and A ∈ [ω]ω be such that
'
∗ M,N

B,A
(

holds. Denote by I the ideal generated by B and the finite sets and let B ∈ [ω]ω ∩M

be such that B /∈ I. Then N |= |A ∩B| = ω.

Proof. Since B /∈ I, we have that for every n ∈ ω and every F ∈ [γ]<ω, B ⊈!
α∈F Bα∪n. Thus, there exists kn,F ≥ n with kn,F ∈ B \

!
α∈F Bα. Define h(n, F ) :=

kn,F +1. By the property
'
∗ M,N

B,A
(
, there exists for each m ∈ ω some n ≥ m and some

F ∈ [γ]<ω such that [n, h(n, F )) \
!

α∈F Bα ⊆ A. In particular, there exists above

each m ∈ ω some kn,F ∈ A ∩B.
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Lemma 2.3 guarantees that if
'
∗ M,N

B,A
(
holds, B is almost disjoint and B extends B

to a larger almost disjoint family, then B is not almost disjoint from A. The following

lemma establishes that this applies to the almost disjoint family introduced by Aγ.

Lemma 2.4. Let G be Aγ+1-generic over V, G|γ := G∩Aγ and let {Aα : α ∈ γ +1}
be the almost disjoint family induced by G. Let Aγ := {Aα : α ∈ γ} be its Aγ-generic

subfamily. Then
'
∗ V[G|γ ], V[G]

Aγ , Aγ

(
holds.

Proof. Let h : ω × [γ]<ω → ω with h ∈ V[G|γ], let m ∈ ω and let 〈p,H〉 be any

A[γ,γ+1)-condition. We can assume that dom(p) = {γ} × np. Let n > max{np,m}.
Define dom(q) := {γ}× nq, where nq := h(n,H), and define

q(γ, i) :=

#
$$%

$$&

p(γ, i) if i ∈ np

1 if i ∈ nq \ np and i /∈
!

α∈H Aα

0 else.

It follows that 〈q,H〉 is stronger than 〈p,H〉 and 〈q,H〉 ⊩A[γ,γ+1)
“[n, h(n,H)) \!

α∈H Aα ⊆ Ȧγ”.

Next, we prove that
'
∗ M,N

B,A
(
is preserved under forcing over M.

Lemma 2.5. Let M ⊆ N be models of ZFC, P ∈ M a forcing notion with P ⊆ M

and B = {Bα : α ∈ γ} ∈ M, A ∈ N such that
'
∗ M,N

B,A
(
holds. Then

'
∗ M[G],N[G]

B,A
(

holds for any G that is P-generic over N (and thus over M).

Proof. Assume by contradiction that there exists h : ω × [γ]<ω → ω in M[G] and

m ∈ ω such that for all n ≥ m and F ∈ [γ]<ω: N[G] |= [n, h(n, F )) \
!

α∈F Bα ⊈ A.

Let ḣ be a P-name for h in M. There exists p ∈ G such that, in N, p ⊩ “∀n ≥
m, ∀F ∈ [γ]<ω : [n, ḣ(n, F )) \

!
α∈F Bα ⊈ A”. For all n, F , there is some pn,F ≤ p

and some kn,F ∈ ω such that, in M, pn,F ⊩ “ḣ(n, F ) = kn,F”. Therefore, again in N,

pn,F ⊩ “[n, kn,F ) \
!

α∈F Bα ⊈ A”, and thus, the function h0 : ω× [γ]<ω → ω given by

h0(n, F ) := kn,F contradicts
'
∗ M,N

B,A
(
.

Similarly, we have the following.

Lemma 2.6. Let ζ be a limit ordinal and for l ∈ {0, 1}, let Pl,ζ be the finite support

iteration 〈〈Pl,η, η ≤ ζ〉, 〈Q̇l,η : η < ζ〉〉, where P0,η is a complete suborder of P1,η for

every η ∈ ζ. Write Vl,η for a Pl,η-generic extension of the ground model Vl,0. Then,

(i) P0,ζ is a complete suborder of P1,ζ .
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(ii) Let B = {Bα : α ∈ γ} ∈ V0,0 and A ∈ V1,0 be such that
'
∗ V0,η ,V1,η

B,A
(
holds for

every η ∈ ζ. Then
'
∗ V0,ζ ,V1,ζ

B,A
(
holds.

Proof. (i) Clearly, P0,ζ ⊆ P1,ζ and incompatible conditions in P0,ζ remain incompatible

in P1,ζ . For any P1,ζ-condition p, there exists η ∈ ζ such that p ∈ P1,η, because p has

finite support. Since P0,η is a complete suborder of P1,η, there exists a reduction q of

p in P0,η (with respect to P1,η). However, it is easy to check that q is also a reduction

of p with respect to P1,ζ .

(ii) Assume by contradiction that there exists a P0,ζ-name ḣ, a P1,ζ-condition p

and m ∈ ω such that p ⊩P1,ζ
“∀n ≥ m, ∀F ∈ [γ]<ω : [n, ḣ(n, F )) \

!
α∈F Bα ⊈ A”.

Since P1,ζ is a finite support iteration, there is η ∈ ζ such that p is in P1,η. Let G1,η

be P1,η-generic with p ∈ G and G0,η := G1,η∩P0,η. Now, in V1,η := V1,0[G1,η] we have

that ⊩P1,ζ/G1,η “∀n ≥ m, ∀F ∈ [γ]<ω : [n, ḧ(n, F )) \
!

α∈F Bα ⊈ A”, where ḧ is the

quotient name ḣ/G0,η of ḣ in V0,η. As in the proof of Lemma 2.5, let pk,F ∈ P0,ζ/G0,η

be such that pk,F ⊩P0,ζ/G0,η ḧ(n, F ) = kn,F for some kn,F ∈ ω. The function h0 ∈ V0,η

given by h0(n, F ) := kn,F yields a contradiction to
'
∗ V0,η ,V1,η

B,A
(
.

Extending the Ultrafilters: The following lemma is the central ingredient needed

to define the matrix iteration.

Lemma 2.7. Let M ⊆ N be models of ZFC, let B = {Bα : α ∈ γ} ⊆ [ω]ω ∩M and

let A ∈ [ω]ω ∩ N be such that
'
∗ M,N

B,A
(
holds. Let U be an ultrafilter on ω in M.

Then, in N, there is an ultrafilter V ⊇ U such that

(i) If C is a maximal antichain of MU in M, then C is a maximal antichain of MV

in N.

(ii)
'
∗ M[G],N[G]

B,A
(
holds for any G that is MV-generic over N.

Proof. We work in N. We need to extend U to an ultrafilter in such a way as to

avoid forbidden subsets of ω, where a subset is forbidden if adding it to the ultrafilter

would violate either (i) or (ii) above.

It is clear which subsets must be forbidden in order to avoid property (i) being

violated: For s ∈ [ω]<ω and a maximal antichain C ⊆ MU in M, we say that X ⊆ ω is

forbidden by s and C if 〈s,X〉 is incompatible with every element of C. Crucially, note

that incompatibility of 〈s,X〉 with some MU -condition 〈s′, X ′〉 does not depend on

the yet to be defined ultrafilter V since this simply means that there is no s′′ ∈ [ω]<ω

such that s′′ \ s ∈ X and s′′ \ s′ ∈ X ′.
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If property (ii) is violated, there would be some condition 〈t, Y 〉 in the extended

Mathias forcing, some MU name ḣ in M and some m ∈ ω such that 〈t, Y 〉 forces

that for every n ≥ m and every F ∈ [γ]<ω: ”[n, ḣ(n, F )) \
!

α∈F Bα ⊈ A”. Let Dḣ
n,F

be maximal antichains in MU and gḣn,F : Dḣ
n,F → ω such that for all p ∈ Dḣ

n,F :

p ⊩MU “ḣ(n, F ) = gḣn,F (p)”. We say that Y ⊆ ω is forbidden by ḣ and t as above

if for every n ∈ ω and F ∈ [γ]<ω: 〈t, Y 〉 is incompatible with every p ∈ Dḣ
n,F for

which [n, gḣn,F (p)) \
!

α∈F Bα ⊆ A.5 Note that every subset of a forbidden set is also

forbidden.

Denote by I the ideal generated by all the forbidden subsets of ω. Assume I∩U =

∅, which we prove below. Now, we obtain the desired ultrafilter by applying the

Kuratowski-Zorn-Lemma to the set of filter-extensions of U that are disjoint from I.

Claim 2.4. I ∩ U = ∅.

Proof. Assume by contradiction that there are sets Xi, Yi, i ∈ k, such that Xi is

forbidden by si and Ci and Yi is forbidden by ḣi and ti and Z :=
!

i∈k Xi ∪ Yi ∈ U .
We may assume that the Xi and Yi are all pairwise disjoint since subsets of forbidden

sets are forbidden. Fix the following terminology: Some r ∈ [ω]<ω is permitted by a

Mathias-condition 〈s,X〉 iff s ⊆ r and r \ s ∈ X. Furthermore, r is permitted by an

antichain C iff there exists a p ∈ C that permits r. Note that conditions 〈s,X〉 and
〈s′, X ′〉 are compatible iff there is some r ∈ [ω]<ω permitted by both of them.

Subclaim. In M, there exists h : ω × [γ]<ω → ω such that for all n, F : h(n, F ) > n

and for every partition of Z ∩ [n, h(n, F )) into 2k pieces, there exists one piece x such

that

(a) For all i ∈ k, there exists t ⊆ x such that Ci permits si ∪ t.

(b) For all i ∈ k, there exists t ⊆ x and some p ∈ Dḣi
n,F with gḣi

n,F (p) < h(n, F ) that

permits ti ∪ t.

Proof. We can work in M since the subclaim only mentions sets in M. Assume by

contradiction that there exist n, F such that for all M > n, there is a partition of

Z ∩ [n,M) such that none of its pieces satisfy both (a) and (b). In other words, for

every M > n, there is a function fM : Z ∩ [n,M) → 2k such that for all j ∈ 2k:

f−1
M (j) does not satisfy both (a) and (b). Note that if either (a) or (b) fails for a

piece x, then it fails for every subset of x, thus fM |Z∩[n,M ′) works as a witness for the

5Note that this way, every 〈t, Y 〉 that introduces a violation of (ii) through ḣ and m is forbidden

by t, ḣ′, where ḣ′ names the same function as ḣ above m and is constantly ḣ(m,F ) below m.
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failure of (a) or (b) for every M ′ < M . It follows that {fM : M > n} is an infinite

tree, and thus by König’s Lemma, it has an infinite branch f : Z \ n → 2k. Now,

{f−1(j) : j ∈ 2k} is a partition of the entire Z \ n into 2k pieces such that none

satisfies both (a) and (b).

Since U is an ultrafilter, one of these pieces X is in U . For every i ∈ k, there

is some p ∈ Ci that is compatible with 〈si, X \ (max si)
+〉 by maximality of Ci. In

particular, there is t ⊆ X such that p permits si ∪ t, and analogously, there is some

q ∈ Dḣi
n,F that permits ti ∪ t′ for some t′ ⊆ X. A contradiction. ⊢Subclaim

We continue with the proof of Claim 2.4. Fix h as in the subclaim. For any n,F,

consider the partition

{Xi ∩ [n, h(n, F )), Yi ∩ [n, h(n, F )) : i ∈ k}

of Z ∩ [n, F ). There must be some piece that satisfies (i) and (ii) in the subclaim.

If Xi ∩ [n, h(n, F )) is that piece, there exists t ⊆ Xi ∩ [n, h(n, F )) ⊆ Xi such that

si ∪ t is permitted by some p ∈ Ci, which implies that 〈si, Xi〉 and p are compatible,

contradicting the fact that Xi is forbidden by si and Ci.

Therefore, some Yi ∩ [n, h(n, F )) must be the piece as in the subclaim, meaning

that there exists t ⊆ Yi ∩ [n, h(n, F )) and p ∈ Dḣi
n,F with gḣi

n,F (p) < h(n, F ) such

that p permits ti ∪ t. In particular, p and 〈ti, Yi〉 are compatible. It follows that

[n, gḣi
n,F (p)) \

!
α∈F Bα ⊈ A, by the definition of Yi being forbidden by ḣi and ti. In

particular, we have [n, h(n, F ))\
!

α∈F Bα ⊈ A. Since this holds for any n, F , we have

a contradiction to property
'
∗ M,N

B,A
(
. ⊢Claim

We need one final well-known fact in order to prove the main theorem of this

subsection.

Lemma 2.8 (cf. [8, Lemma 13]). Let P be a complete suborder of Q, let Ȧ be a

P-name for a forcing notion and let Ḃ be a Q-name for a forcing notion. Furthermore,

assume that ⊩Q “Ȧ ⊆ Ḃ and every maximal antichain of Ȧ in V[Ǧ|P] is a maximal

antichain of Ḃ in V[Ǧ]”. Then, P ∗ Ȧ is a complete suborder of Q ∗ Ḃ.

Theorem 2.4. Let κ < λ be regular uncountable cardinals in the ground model V.

There is a c.c.c. forcing extension of V in which b = a = κ < s = λ.

Proof. We recursively define the matrix iteration

〈〈Pα,ζ : α ≤ κ, ζ ≤ λ〉, 〈Q̇α,ζ : α ≤ κ, ζ < λ〉〉
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as described earlier, such that the following two conditions are satisfied, where Aα =

{Aβ, β ∈ α} is the Aα-generic almost disjoint family in Vα,0.

(i) For every ζ ≤ λ and all β < α ≤ κ, Pβ,ζ is a complete suborder of Pα,ζ .

(ii) For every ζ ≤ λ and β < κ,
'
∗ Vβ,ζ ,Vβ+1,ζ

Aβ ,Aβ

(
holds.

By recursion on ζ. For ζ = 0 and α ≤ κ, we have already seen that Pα,0 := Aα

satisfies (i). On the other hand, property (ii) is satisfied by Lemma 2.4.

Assume that ζ = η + 1, ζ ≡ 1 mod 2, and Pα,η has been defined for all α ≤ κ in

such a way that (i) and (ii) are satisfied. For α = 0, let U̇0,η be any P0,η-name for

an ultrafilter and let Q̇0,η be a P0,η-name for MU̇0,η
. Define P0,ζ := P0,η ∗ Q̇0,η. We

proceed by induction and first assume that α = β + 1. By Lemma 2.7, there is a

Pα,η-name U̇α,η for an ultrafilter such that

⊩Pα,η

#
$$$$$$$$%

$$$$$$$$&

(a) ”U̇β,η ⊆ U̇α,η” and

(b) ”every maximal antichain of MU̇β,η
in Vβ,η is a maxi-

mal antichain of MU̇α,η
in Vα,η” and

(c) ”
'
∗ Vβ,ζ ,Vα,ζ

Aβ ,Aβ

(
holds”, where Vα,ζ is a MU̇α,η

-generic

extension of Vα,η.

Let Q̇α,η be a Pα,η-name for MU̇α,η
and set Pα,ζ := Pα,η ∗ Q̇α,η. By Lemma 2.8, Pβ,ζ is

a complete suborder of Pα,ζ . Condition (ii) is satisfied due to (c).

If α is a limit ordinal, consider the filter named by
!

β<α U̇β,η. If cf(α) > ω,

this is an ultrafilter and (b) is satisfied for every β < α since every real in Vα,η

already appears in some earlier Vβ,η. In the case cf(α) = ω, we need to extend it to

an ultrafilter first, such that (i) and (ii) are satisfied, using similar arguments as in

Lemma 2.7. For the details, see Blass and Shelah [6, p. 266].

If ζ = η + 1, ζ ≡ 0 mod 2, we define Pα,ζ = Pα,η ∗ Q̇α,η as described earlier: If

α ≤ f(η), let Q̇α,η be a Pα,η-name for the trivial forcing notion and if α > f(η), let

Q̇α,η be a Pα,η-name for DVf(η),η . It is easy to see that this satisfies (i): If β < α ≤ f(η),

then Pβ,ζ = Pβ,η and Pα,ζ = Pα,η, which yields (i) by the induction hypothesis. If

β ≤ f(η) < α, then Pβ,ζ = Pβ,η is a complete suborder of Pα,η by the induction

hypothesis and thus of Pα,η ∗ Q̇α,η = Pα,ζ . If f(η) < β < α, then Pβ,ζ is a complete

suborder of Pα,ζ by Lemma 2.8. Similarly, (ii) follows from the induction hypothesis

for β < f(η) and from Lemma 2.5 for β ≥ f(η).

Finally, if ζ is a limit ordinal, we let Pα,ζ be the finite support iteration 〈〈Pα,η, η ≤
ζ〉, 〈Q̇α,η : η < ζ〉〉. Then, (i) and (ii) are satisfies by Lemma 2.6.

23



Claim 2.5. Let ζ ≤ λ. Then,

(i) For every Pκ,ζ-condition p, there exists q ≤Pκ,ζ
p and α < κ such that q is

already a Pα,ζ-condition.

(ii) If ḟ is a Pκ,ζ-name for a real, there exists α < κ and a nice Pα,ζ-name ġ such

that ⊩Pκ,ζ
ḟ = ġ.

Proof. By induction on ζ. Note that (ii) follows from (i) since Pκ,ζ satisfies the

c.c.c. and κ is regular. If ζ = 0, then (i) follows directly from the definition of Aκ. If

ζ = η+1 and p ∈ Pκ,ζ , then p is of the form p0
! q̇, where p0 is a Pκ,η-condition and q̇ is

a Pκ,η-name for either a Mathias condition or a Hechler condition. By strengthening

p0 to p1, we can assume that q̇ is of the form op(š, ẋ), where s ∈ [ω]<ω or s ∈ <ωω

and ẋ is a name for an element of either [ω]ω or ωω. In either case, by the induction

hypothesis, there is some α < κ such that ẋ is equivalent to a nice Pα,η-name ẏ. Also

by the induction hypothesis, there exists p2 ≤Pκ,η p1 such that p2 is a Pα′,η-condition

for some α′ < κ. It follows that p2
! op(š, ẏ) is in Pmax{α,α′},ζ .

Finally, if ζ is a limit ordinal and p ∈ Pκ,ζ , then p already lies in Pκ,η for some

η < ζ since Pκ,ζ is a finite support iteration. By the induction hypothesis, there exists

q ≤Pκ,η p that is in Pα,η for some α < κ. Hence, q is in Pα,ζ . ⊢Claim

Claim 2.6. Vκ,λ |= b = a = κ < s = λ.

Proof. In Vκ,λ, we have b ≤ a ≤ κ since b ≤ a is a well-known ZFC inequality6 and

because the almost disjoint family {Aα : α ∈ κ} remains MAD in Vκ,λ: For every

B ∈ [ω]ω ∩Vκ,λ, there exists α < κ such that B ∈ Vα,λ, by Claim 2.5. Either B has

infinite intersection with one of the Aβ ∈ Aα, or B is not in the ideal I generated by

Aα and the finite sets, and therefore |B ∩ Aα| = ω by Lemma 2.3.

For any B ⊆ ωω ∩Vκ,λ of cardinality <κ, there exists again by Claim 2.5 and by

regularity of κ some α < κ and ζ < λ such that B ⊆ ωω∩Vα,ζ . Since f
−1(α) is cofinal

in λ, there is some ζ ′ ≥ ζ such that f(ζ ′) = α. Thus, Pα+1,ζ′+1 = Pα+1,ζ′ ∗ Q̇α+1,ζ′ ,

where Q̇α+1,ζ′ is a Pα+1,ζ′-name for DVα,ζ′ . It follows that there is a real x in Vα+1,ζ′+1

dominating ωω ∩Vα,ζ′ , and thus in particular B. Consequently, Vκ,λ |= b ≥ κ, which

by the above yields Vκ,λ |= b = a = κ.

Finally, every S ⊆ [ω]ω ∩Vκ,λ of cardinality <λ already appears in Vκ,η for some

η < λ with η ≡ 0 mod 2. The subsequent Mathias forcing then adds a real not split

by [ω]ω ∩Vκ,η. On the other hand, since D adds dominating reals, it adds splitting

reals, which yields a splitting family of cardinality λ. Thus Vκ,λ |= s = λ. ⊢Claim

6see, for example, [21, Theorem 9.7].
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2.2 The Generalized Characteristics s(κ) and b(κ)

2.2.1 s(κ) and Large Cardinals

Before proving that the independence of s and b fails in the higher Baire spaces,

we show how the value of s(κ) is linked to two large cardinal assumptions on κ. In

particular, the inequality s(κ) ≥ κ+, which we might expect to hold for any cardinal

characteristic, is equivalent to κ being weakly compact. We first give a proof that

s(κ) ≥ κ holds if and only if κ is strongly inaccessible, a result originally due to

Motoyoshi [31].

Theorem 2.5 ([31], cf. [40, Lemma 3]). s(κ) ≥ κ is equivalent to κ being strongly

inaccessible.

Proof. First, assume that κ is not strongly inaccessible. Let λ < κ be the least

cardinal with 2λ ≥ κ. Fix some injection ϕ : κ → λ2 and define for each s ∈ <λ2 the

set bs := {α ∈ κ : s ⊆ ϕ(α)}. Note that the family S := {bs : s ∈ <λ2} ∩ [κ]κ has

cardinality <κ, by the minimality of λ. We show that S is a splitting family.

Assume by contradiction that there exists y ∈ [κ]κ not split by S. Define X :=

{s ∈ <λ2 : |bs ∩ y| = κ}. By assumption, we have bs0 ∩ bs1 ∕= ∅ for all s0, s1 ∈ X, and

hence, for every α ∈ bs0 ∩ bs1 : s0, s1 ⊆ ϕ(α), showing that X is linearly ordered by

”⊆”. Consequently, there exists f ∈ λ2 such that all s ∈ X are initial segments of

f , which implies that for every α ∈ y \ ϕ−1(f), there is an initial segment t of ϕ(α)

such that t /∈ X. Thus, y \ ϕ−1(f) ⊆
!
{bt ∩ a : t ∈ <λ2 \X}. However, the latter is

a union of <κ many sets of cardinality <κ and y \ ϕ−1(f) has cardinality κ.

For the other direction, we use the following lemma, which we will reuse in the

proof of Theorem 2.6.

Lemma 2.9. Assume that κ is strongly inaccessible and that S ⊆ [κ]κ is of cardinality

<κ. There exists a decomposition S = B0 ∪ B1 such that the set C :=
"

B0 \
!

B1

has cardinality κ

Proof. Let S ⊆ [κ]κ be of cardinality λ < κ. For a sufficiently large θ, let M be an

elementary submodel of Hθ, such that κ ∈ M , P(S) ⊆ M and |M | = 2λ < κ. Let

sup(κ ∩M) < δ < κ and define B0 := {x ∈ S : δ ∈ x} and B1 := {x ∈ S : δ /∈ x}.
Note that B0, B1 ∈ M since P(S) ⊆ M . In particular, it follows that C ∈ M . Since
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δ ∈ C, we have for every α ∈ κ ∩M : Hθ |= ∃β ∈ C : β > α, and therefore, since M

is an elementary submodel of Hθ, the set C ∩M is unbounded in κ∩M . Thus, again

by elementarity, |C| = κ.

Now, let S ⊆ [κ]κ be of cardinality <κ and B0, B1, C as in the lemma. For every

x ∈ S, either x ∈ B1, in which case C ⊆ x, or x ∈ B2, in which case C ∩ x = ∅. In

both cases, x does not split C, and hence S is not a splitting family.

Next, we prove the main result of this subsection, the equivalence of s(κ) ≥ κ+

and weak compactness of κ. This is originally due to Suzuki [38]. The proof presented

here is based both on Raghavan and Shelah [32] and on Zapletal [40].

Theorem 2.6 ([38, Theorem 1], cf. [32, Lemma 3.1], [40, Lemma 4]). s(κ) ≥ κ+ if

and only if κ is weakly compact.

Proof. Assume that s(κ) ≥ κ+ and let π : [κ]2 → 2 be a coloring. We need to find

some A ∈ [κ]κ that is monochromatic with respect to π.

Define for each α ∈ κ and j ∈ 2 the set Kα,j := {β > α : π({α, β}) = j}.
By assumption, {Kα,0 : α ∈ κ} is not a splitting family, hence there exists some

x ∈ [κ]κ such that for all α ∈ κ, either x ⊆∗ Kα,0 or x ⊆∗ Kα,1. By the pigeonhole

principle, we find y ⊆ x of cardinality κ such that, without loss of generality, for

all α ∈ y : x ⊆∗ Kα,0. We define A = {γα : α ∈ κ} ⊆ y by induction as follows:

Suppose 〈γξ : ξ ∈ α〉 ∈ αy is defined. For every ξ ∈ α, let δξ ∈ κ be minimal such

that x \ δξ ⊆ Kγξ,0 and δξ′ < δξ for all ξ′ < ξ. Let δ := sup{δξ : ξ ∈ α} and set

γα := min y \ δ.
Clearly, α < β implies γα < γβ, and thus, A ∈ [κ]κ. Furthermore, by construction,

π(γα, γβ) = 0 for all α < β < κ, and hence, A is monochromatic.

We prove the other direction via the tree property. Assume κ is weakly compact

and let S = {aξ : ξ ∈ κ} be of cardinality κ. We show that S is not a splitting family.

Let T ⊆ <κ2 be the following tree:

T :=
)

α∈κ
{t ∈ α2 : The set Ct :=

*

ξ∈α:
t(ξ)=1

aξ \
)

ξ∈α:
t(ξ)=0

aξ has cardinality κ}.

Since κ is inaccessible, each level of T has cardinality at most 2α < κ. Furthermore,

by Lemma 2.9 in the proof of Theorem 2.5, for every α ∈ κ there exists t ∈ T ∩ α2,

and hence, T has height κ. Now, by the weak compactness of κ, T has a cofinal

branch f : κ → 2.
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By induction, construct a strictly increasing sequence 〈βα : α ∈ κ〉 with βα ∈ Cf |α
and set C := {βα : α ∈ κ}. For any ξ ∈ κ, either {βα : α > ξ} ⊆ aξ if f(ξ) = 1 or

{βα : α > ξ} ∩ aξ = ∅ if f(ξ) = 0. In both cases, aξ does not split C, showing that S
is not a splitting family.

2.2.2 ZFC proves s(κ) ≤ b(κ) for Regular Uncountable κ

The following observation is due to Schilhan [35]. Apart from allowing us to simplify

Raghavan’s and Shelah’s proof of the main theorem of this subsection, it will be

important in Chapter 4.

Lemma 2.10 ([35, Theorem 2.5, Theorem 2.9]). Let κ be regular uncountable. Then

b(κ) = tcl(κ).

Proof. First, let B ⊆ κκ be an unbounded family of cardinality b(κ). We may assume

without loss of generality that B is well-ordered by ≤∗, i.e., B = {gξ : ξ ∈ b(κ)}
and ξ < ξ′ =⇒ gξ ≤∗ gξ′ . Furthermore, we can assume that the gξ ∈ B are

strictly increasing. Consider the sequence of clubs 〈cξ : ξ ∈ b(κ)〉, where cξ :=

{α ∈ κ : gξ[α] ⊆ α}. It is easy to check that this sequence is well-ordered by ⊇∗.

Furthermore, if p ∈ [κ]κ were a pseudo-intersection of the cξ, the function fp ∈ κκ

given by fp(α) := min(p \ (α + 1)) would dominate B.
On the other hand, for any set H of clubs without a pseudo-intersection, the

family {fc : c ∈ H} ⊆ κκ is unbounded since if g ∈ κκ were dominating, the club

{α ∈ κ : g[α] ⊆ α} would pseudo-intersect H.

In particular, Lemma 2.10 implies that b(κ) ∈ sp(t(κ)) for regular uncountable

κ. While not necessary for the proof of the main theorem of this subsection, the

following lemma provides a corresponding result for the case κ = ω.

Lemma 2.11 (Folklore). Assume b(ω) < d(ω). Then b(ω) ∈ sp(t(ω)).

Proof. Let B = {gξ : ξ ∈ b(ω)} ⊆ ωω be unbounded and such that ξ < ξ′ =⇒ gξ ≤∗

gξ′ . Assume further that every gξ ∈ B is strictly increasing. Since b(ω) < d(ω), there

exists f ∈ ωω that is not dominated by B. For each ξ ∈ b(ω), let aξ := {n ∈ ω : f(n) >

gξ(n)}. Clearly, the sequence 〈aξ : ξ ∈ b(ω)〉 is well-ordered by ⊇∗. If it were pseudo-

intersected by p ∈ [ω]ω, the function fp ∈ ωω given by fp(n) := f(min(p \ (n + 1)))

would dominate B.
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Note that the assumption b(ω) < d(ω) is necessary: The model constructed in

Section 2.1.1 satisfies b(ω) = d(ω) = 2ω = λ, but contains no ω-tower of height λ by

Theorem 2.3. Next, we prove the main theorem of this subsection, Raghavan’s and

Shelah’s surprising discovery that the higher characteristics s(κ) and b(κ) are not

independent.

Theorem 2.7 (cf. [32, Theorem 1.10]). For κ regular uncountable, s(κ) ≤ b(κ).

Proof. Assume by contradiction that b(κ) < s(κ), i.e., by Lemma 2.10, κ < b(κ) =

tcl(κ) =: λ < s(κ). Let 〈cξ : ξ ∈ λ〉 be a κ-club-tower of height λ. For a large enough

θ, let M be an elementary submodel of Hθ such that λ ⊆ M , {cξ : ξ ∈ λ} ⊆ M

and |M | = λ. By assumption, [κ]κ ∩ M is not a splitting family, hence there exists

some A0 ∈ [κ]κ such that for all x ∈ [κ]κ ∩M : A0 ⊆∗ x or A0 ⊆∗ κ \ x. Define the

filter F := {x ∈ [κ]κ ∩M : A0 ⊆∗ x}, which is an ultrafilter over M . Note that F is

κ-complete, i.e., intersections of fewer than κ many elements of F are in F . We use

the following lemma, which is similar to a result by Scott (cf. [28, Ex. 5.12]).

Lemma 2.12. There exists f∗ ∈ κκ ∩ M such that for every club C ∈ [κ]κ ∩ M :

f−1
∗ (C) ∈ F .

We prove this lemma below. Assuming we have it, we find that for each ξ <

λ : f−1
∗ (cξ) ∈ F , and thus A0 ⊆∗ f−1

∗ (cξ). Hence, for all ξ ∈ λ : f∗(A0) ⊆∗ cξ,

which contradicts the assumption that 〈cξ : ξ ∈ λ〉 is a tower, provided f∗(A0) is of

cardinality κ. But this is easy to see because for every β ∈ κ, the set κ\β is a club and

an element of M (since κ ⊆ M), which implies by the Lemma that f−1
∗ (κ \ β) ∈ F .

Therefore, A0 ⊆∗ f−1
∗ (κ \ β), and in particular there exists α ∈ A0 with f∗(α) > β.

Proof of Lemma 2.12. Define the following equivalence relation on κκ ∩M :

∀f, g ∈ κκ ∩M : f ∼F g : ⇐⇒ {α ∈ κ : f(α) = g(α)} ∈ F .

Denote the equivalence class of f by [f ]F and set L := {[f ]F : f ∈ κκ ∩M}. Define

the following order on L.

[f ]F <F [g]F : ⇐⇒ {α ∈ κ : f(α) < g(α)} ∈ F .

Since F is a filter, this is well-defined and <F is transitive. Denote by i ∈ κκ the

identity function on κ and for each α ∈ κ, let cα ∈ κκ be the function that is constantly

equal to α. Note that the cα and i are in M , since κ ∪ {κ} ⊆ M .
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For any δ < κ and any partition 〈Xξ : ξ ∈ δ〉 ∈ M of κ, there is a unique ι ∈ δ

with Xι ∈ F : Since δ ⊆ M , each Xξ is in M , and hence each κ \Xξ is in M . If none

of the Xξ were in F , each κ\Xξ would be and thus, by κ-completeness of F , it would

follow that ∅ =
"

ξ∈δ κ \Xξ ∈ F .

Claim 2.7. L is well-ordered by <F .

Proof. For all [f ]F , [g]F ∈ L, the sets {α ∈ κ : f(α) = g(α)}, {α ∈ κ : f(α) < g(α)}
and {α ∈ κ : f(α) > g(α)} are in M and partition κ. Hence, exactly one of them is

in F , which shows that <F is a linear ordering. To check that <F is a well-ordering,

assume by contradiction that 〈[fj]F : j ∈ ω〉 is strictly descending with respect to <F .

Thus, for each j ∈ ω, the set Xj := {α ∈ κ : fj+1(α) < fj(α)} is in F . Since κ > ω,

the set X :=
"

j∈ω Xj is in F by κ-completeness.7 In particular X ∕= ∅. Hence, for

β ∈ X, the sequence 〈fj(β) : j ∈ ω〉 is a strictly descending sequence of ordinals,

which is a contradiction. ⊢Claim

In particular, note that [i]F is an upper bound for the set {[cα]F : α ∈ κ}, and
hence, since <F is a well-ordering, {[cα]F : α ∈ κ} has a least upper bound [f∗]F . It

remains to prove that f∗ is the required function, i.e., that f−1
∗ (C) ∈ F for every club

C ∈ [κ]κ ∩M .

Assume by contradiction that for some C ∈ [κ]κ ∩ M , f−1
∗ (C) /∈ F . Since f∗,

C and κ are in M , f−1
∗ (C) and κ \ f−1

∗ (C) = f−1
∗ (κ \ C) are as well, and thus,

Y := f−1
∗ (κ \ C) ∈ F . Define f : κ → κ, f(α) := sup(C ∩ f∗(α)) and note f ∈ M .

For every α ∈ Y , f∗(α) /∈ C, and therefore, since C is closed, f(α) < f∗(α), which

shows that [f ]F <F [f∗]F . Since C is unbounded, there exists for each β ∈ κ some

δ > β with δ ∈ C, and because [cδ]F <F [f∗]F , the set Z := {α ∈ κ : f∗(α) > δ} is in

F . For each α ∈ Z : cβ(α) = β < δ ≤ f(α), which shows [cβ]F <F [f ]F . Hence, [f ]F
is an upper bound for {[cβ]F : β ∈ κ} and [f ]F <F [f∗]F , a contradiction.

7Note that κ > ω is necessary here. For κ = ω, a strictly descending sequence as above is given

by setting fj(n) := n− j for n ≥ j and fj(n) := 0 otherwise.
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Chapter 3

Separating s(κ) and b(κ) at Large

Cardinals

Having established that s(κ) ≤ b(κ) for uncountable κ, the main goal of this chapter

is to show that the separation s(κ) < b(κ) is consistent at many κ simultaneously.

Stated in this form, this is of course trivial since by Theorem 2.6, s(κ) ≤ κ < b(κ)

if κ is not weakly compact. Hence, we want a model in which s(κ) < b(κ) for many

weakly compact κ simultaneously. As explained previously, we assume a slightly

stronger large cardinal property of κ – namely strong unfoldability – in order to

ensure that κ remains weakly compact after forcing the separation. The definition of

strong unfoldability is somewhat technical.

Definition 3.1. Denote by ZFC− the axioms of ZFC without the power set axiom

and let θ be an ordinal. A cardinal κ is θ-strongly unfoldable iff κ is inaccessible and

for every transitive set model M |= ZFC− with |M | = κ, κ ∈ M and <κM ⊆ M ,

there exists a transitive set model N and an elementary embedding j : M → N with

critical point κ such that θ < j(κ) and Vθ ⊆ N . A cardinal κ is strongly unfoldable

iff it is θ-strongly unfoldable for every ordinal θ.

The following fact is due to Villaveces [39].

Fact 3.1 ([39, Proposition 1.6]). Every strongly unfoldable cardinal is weakly com-

pact.

Relevant for our purposes is Johnstones indestructibility result [26] mentioned in

the overview. In order to state it, we need to define the notion of a κ-proper forcing.
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Definition 3.2. Assume that κ is a cardinal with κ<κ = κ. A forcing notion P is

κ-proper iff for all sufficiently large regular λ, there is an x ∈ Hλ such that for every

elementary submodel X of Hλ with |X| = κ, <κX ⊆ X and {κ,P, x} ⊆ X, there

exists for every p ∈ P ∩X an X-generic q ≤ p. Recall that q is X-generic iff every

P-generic filter G over V with q ∈ G intersects every dense set D ∈ X in X, meaning

G ∩D ∩X ∕= ∅.

Fact 3.2 ([26, Fact 13.4]). Every κ+-c.c. forcing notion is κ-proper.

Here is the crucial theorem. We provide a sketch of its proof below.

Theorem 3.1 (Johnstone [26, Main Theorem]). For every strongly unfoldable cardi-

nal κ, there exists a forcing notion P, the lottery preparation of κ, such that forcing

with P makes the strong unfoldability of κ indestructible by every κ-closed, κ-proper

forcing notion. Furthermore, P satisfies the κ-c.c. and P ∈ Hκ+ .

Thus, precomposing the forcing notion separating s(κ) and b(κ) – which will be

κ-closed and satisfy the κ+-c.c. – with the lottery preparation, we can ensure that

κ remains strongly unfoldable and hence weakly compact in the extension. In fact,

it follows from [26, Fact 25] that such a preparatory forcing is necessary: Should we

happen to force directly over the ground model L, the weak compactness of κ would

indeed be destroyed in the extension.

The subsequent few pages sketch the proof of Theorem 3.1. In order to construct

a model in which s(κ) < b(κ) only at a single cardinal κ, which was done by Bağ

and Fischer [1] (cf. Section 3.1), Theorem 3.1 can be applied as a black box1, and

the reader interested in that result may therefore skip ahead to Section 3.1. For the

global separation (Section 3.2) however, some of the details in the construction of the

lottery preparation are relevant.

Proof of Theorem 3.1 (Sketch). Fix the following terminology: For a strongly inac-

cessible κ, any transitive M |= ZFC− with |M | = κ, κ ∈ M and <κM ⊆ M is called

a κ-model. Furthermore, an elementary embedding j : M → N with critical point κ

such that θ < j(κ) and Vθ ⊆ N is called a θ-strong unfoldability embedding.

As noted above, P is the lottery preparation of κ, a tool developed by Hamkins

in [22]. For a collection A of forcing notions, denote by
+

A the forcing notion

{〈Q, p〉 : Q ∈ A, p ∈ Q} ∪ { }, where is the maximal element and 〈Q, p〉 ≤
〈Q′, p′〉 ⇐⇒ Q = Q′ and p ≤Q p′. Since a

+
A-generic filter is simply a Q-generic

1In fact, so can the definition of strong unfoldability itself.
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filter for a ‘randomly’ selected Q ∈ A, the forcing notion
+

A is called the lottery

sum of A. With this lottery sum, we define the lottery preparation of κ relative to

some fixed (partial) function f ∈ κκ: It is the length κ iteration with Easton support

which at stage γ ∈ κ, if γ ∈ dom(f) and f [γ] ⊆ γ, consists of the lottery sum of all

the γ-closed forcing notions Q ∈ Hf(γ)+ in a Pγ-generic extension. All other stages of

the lottery preparation are trivial.

The lottery preparation used in the proof is relative to an f ∈ κκ with the so

called Menas property for κ. This means that for every ordinal θ and every κ-model

M with f ∈ M , there exists a θ-strong unfoldability embedding j : M → N such

that j(f)(κ) ≥ ℶN
θ . We omit the proof that a function with the Menas property for

κ exists.

Fix any f ∈ κκ with the Menas property for κ, let P be the lottery preparation

of κ relative to f and Q̇ a P-name for a κ-closed, κ-proper forcing notion. Further-

more, fix an ordinal θ. We need the following alternative characterisation of θ-strong

unfoldability:

Fact 3.3 ([26, Fact 4]). A cardinal κ is θ-strongly unfoldable iff for every A ⊆ κ,

there exists a κ-model M and a θ-strong unfoldability embedding j : M → N such

that A ∈ M .

Hence, to show that κ remains θ-strongly unfoldable in any P ∗ Q̇-generic ex-

tension, we need to show that for any subset A of κ in the extension, the set of

P ∗ Q̇-conditions forcing the existence of a κ-model containing A and of a θ-strong

unfoldability embedding of this κ-model, are dense in P ∗ Q̇. Let Ȧ be a P ∗ Q̇-name

for a subset of κ and r′ any P ∗ Q̇-condition.

First, note that one can prove that P ∗ Q̇ is κ-proper. Choose λ large enough

so that Hλ witnesses this and contains all the relevant sets. Let X ≺ Hλ be of size

κ such that <κX ⊆ X and {κ, r′,P, f, Q̇, Ȧ, θ} ⊆ X. By κ-properness, there is an

X-generic r ≤ r′. Let G ∗ g be P ∗ Q̇-generic over V with r ∈ (G ∗ g). The claim

is that r is the required condition, i.e., that in V[G ∗ g], the set A := Ȧ[G] can be

placed in a κ-model with a corresponding embedding.

Let π : (X,∈) → (M,∈) be the Mostowski-collapse of X, so that M is a κ-model.

By induction, π|Vκ = id, which implies that π fixes κ, P and f , but generally collapses

Q̇ to π(Q̇) =: Q̇0 and Ȧ to π(Ȧ) =: Ȧ0. Since κ is (θ + 1)-strongly unfoldable, there

exists a (θ + 1)-strong unfoldability embedding j : M → N . By a result in [13], we

may assume that |N | = ℶθ+1 and that ℶθN ⊆ N . Furthermore, by possibly including

an additional forcing, Johnstone shows that we may assume ℶθ+1 = ℶ+
θ .
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From the fact that G ∗ g is X-generic – since it contains r – it follows with a

bit of work that the pointwise image π[G ∗ g] is of the form G ∗ g0, where G is M -

generic for P and g0 is M [G]-generic for Q0 := Q̇0[G]. Crucially, it further follows that

A = Ȧ0[G ∗ g0]. Thus, A ∈ M [G ∗ g0], which gives us a candidate κ-model containing

A.

The core of the proof now consist in finding a θ-strong unfoldability embedding

of M [G ∗ g0]. This is done by lifting the embedding j : M → N twice – first to an

embedding j : M [G] → N [j(G)] and then the latter to an embedding j : M [G][g0] →
N [j(G)][j(g0)]. By the lifting criterion, this succeeds if and only if there exists,

firstly, an N -generic filter j(G) for the forcing notion j(P) such that j[G] ⊆ j(G), and

secondly, an N [j(G)]-generic filter j(g0) for j(Q0) such that j[g0] ⊆ j(g0).

To construct the filter j(G) for j(P), note that in N , j(P) is the lottery preparation

of j(κ) > κ relative to j(f). Since f has the Menas property, j(f)(κ) is large enough

so that at stage κ of the iteration j(P), the forcing notion Q appears in the lottery

sum. Therefore, by constructing the filter above a condition that selects Q as the

’winning’ forcing notion at stage κ, we can decompose j(P) as P ∗ Q̇ ∗ Ptail. Since, by

elementarity, we already have an N -generic filter for P ∗ Q̇, namely G ∗ g, we only

need to construct an N [G ∗ g]-generic filter Gtail for Ptail and set j(G) := G ∗ g ∗Gtail.

Such a Gtail can be constructed by diagonalization, similarly to how generic filters for

countable transitive models are constructed: One notices that |N [G ∗ g]| ≤ ℶ+
θ , that

ℶθN [G ∗ g] ⊆ N [G ∗ g] and crucially, that Ptail is ℶ+
θ -closed, which follows from the

definition of the lottery preparation and the fact that j(f)(κ) ≥ ℶθ by the Menas

property.

It remains to lift the embedding j : M [G] → N [j(G)] to j : M [G ∗ g0] →
N [j(G) ∗ j(g0)], again using the lifting criterion. This is easy because we can show

that there exists a j(Q0)-condition q above j[g0]. Thus, by constructing j(g0) again

by diagonalization and in such a way that q ∈ j(g0), we get a filter with j[g0] ⊆ j(g0).

Finally, note that G ∗ g ∈ N [j(G)] by construction of j(G) and that Vθ+1 ⊆ N ,

by definition of a (θ + 1)-strong unfoldability embedding. This implies

V[G ∗ g]θ+1 ⊆ Vθ+1[G ∗ g] ⊆ N [j(G) ∗ j(g0)],

which shows that the twice lifted j is indeed a θ-strong unfoldability embedding of

M [G ∗ g0].
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3.1 s(κ) = κ+ < b(κ) at a Single κ

The construction separating s(κ) and b(κ) globally is based on a construction at a

single cardinal κ due to Bağ and Fischer [1], which we present in this section. Probably

the most intuitive approach to obtain a model in which s(κ) = κ+ < b(κ) = λ would

be a λ-stage iteration of κ-Hechler forcing (the generalization of Hechler forcing to κ),

analogous to how s = ω1 < b = λ was obtained in Section 2.1.1. While generalized

eventually narrow sequences are indeed preserved by the single stage generalized

Hechler forcing (cf. [1, Theorem 3.5]), the preservation fails for longer iterations at

stages of countable cofinality. This can also be seen in the following way: If eventually

narrow sequences were preserved by iterations of κ-Hechler forcing of length λ > κ+,

the argument in the proof of Theorem 2.3 would go through, which would show that

there are no κ-towers of height λ = b(κ) in the extension. However, there must exist

such a tower by Lemma 2.10.

Hence, a different strategy is needed. By Lemma 2.10, we know that b(κ) = tcl(κ),

which suggests iteratively pseudo-intersecting the set of κ-clubs in order to increase

b(κ). This is achieved using the following variant of Mathias forcing.

Definition 3.3. Denote by C the set of all clubs in κ. The forcing notion M(C)
consists of pairs 〈a, C〉, where a ∈ [κ]<κ and C ∈ C, ordered by 〈a, C〉 ≤ (a′, C ′) :

⇐⇒ a ⊇ a′, C ⊆ C ′ and a\a′ ⊆ C ′. Let M(C)λ be the λ-stage, <κ-support iteration

of M(C).

It is clear that for every M(C)-generic filter G, the κ-real
!
{a : ∃C ∈ C : 〈a, C〉 ∈

G} pseudo-intersects every ground model club. We can assume without loss of gen-

erality that M(C)λ-conditions are of the form 〈ā, C̄〉, where

(i) ā is a sequence 〈aξ : ξ ∈ I〉 with I ∈ [λ]<κ and aξ ∈ [κ]<κ,

(ii) C̄ is a sequence 〈Ċξ : ξ ∈ I〉, where Ċξ is an M(C)ξ-name for a club in κ.

Fact 3.4. Let κ be regular uncountable, κ<κ = κ and λ > 0 any ordinal.

(i) M(C)λ is κ-closed.

(ii) M(C)λ-conditions p0 = 〈ā0, C̄0〉 and p1 = 〈ā1, C̄1〉 for which

∀ξ ∈ dom(ā0) ∩ dom(ā1) : ā0(ξ) = ā1(ξ)

are compatible.

(iii) M(C)λ satisfies the κ+-c.c..
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Proof. Fact (i) holds because the single stage forcing M(C) is κ-closed in the obvious

way, by the regularity of κ. Since we force with <κ-supports, M(C)λ is also κ-

closed. Fact (ii) is also checked easily since for any M(C)ξ-names Ċ1 and Ċ2 for clubs,

we can build an M(C)ξ-name Ċ for a club such that ⊩M(C)ξ “Ċ = Ċ1 ∩ Ċ2”. For

Fact (iii), let A be a set of M(C)λ-conditions with |A| = κ+. For p = 〈āp, C̄p〉, set
Ip := dom(āp) = dom(C̄p). Applying the ∆-system Lemma, we obtain A′ ⊆ A of

cardinality κ+ and R ∈ [λ]<κ such that for all p, p′ ∈ A′: Ip ∩ Ip′ = R. By the

assumption κ<κ = κ and the pigeonhole principle, there exists 〈rξ : ξ ∈ R〉 with

rξ ∈ [κ]<κ and some A′′ ⊆ A′ of cardinality κ+ such that for all p ∈ A′′ and ξ ∈ R:

āp(ξ) = rξ. By (ii), the conditions in A′′ are pairwise compatible.

Definition 3.4. By induction on λ, define nice M(C)λ-names for subsets of κ as

follows: Assume we have defined nice M(C)α-names for all α ∈ λ. A nice M(C)λ-
name ẋ is any name of the form ẋ =

!
ξ∈κ{ξ̌} × Aξ, where Aξ is an antichain in

M(C)λ and for each 〈ā, C̄〉 ∈ Aξ and each ζ ∈ dom(C̄), C̄(ζ) is a nice M(C)ζ-name

for a club in κ.

Fact 3.5. For any M(C)λ-name ẏ for a subset of κ, there exists a nice M(C)λ-name

ẋ such that ⊩ ẏ = ẋ.

Definition 3.5. Denote by Cκ+ the <κ-support product of κ+ many κ-Cohen forcings

C = Fn<κ(κ, 2).
2 Let λ > κ+ be regular and denote by Q the forcing notion Cκ+ ∗

˙M(C)λ.

Lemma 3.1. Assume κ<κ = κ and 2κ = κ+.

(i) Q is κ-closed and satisfies the κ+-c.c.,

(ii) ⊩Q b(κ) = tcl(κ) = 2κ = λ.

Proof. (i) Cκ+ is clearly κ-closed and satisfies the κ+-c.c. by a standard ∆-system

argument. Since both of these properties are preserved under finite iterations, the

claim follows. To check (ii), note that any family of clubs of cardinality <λ in a Q-

generic extension already appears at a stage before λ, by regularity of λ and Fact 1.4,

and is thus pseudo-intersected by the subsequent Mathias-real. Finally, ⊩Q 2κ ≤ λ

follows by counting nice names.

2I.e., conditions in C are partial functions p : κ → 2 with |dom(p)| < κ, ordered by reverse

inclusion.
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Theorem 3.2. Let κ be strongly unfoldable and such that 2κ = κ+. For any regular

λ > κ+, there is a forcing extension in which

s(κ) = κ+ < b(κ) = λ.

Proof. We first force with the lottery preparation of κ (cf. Theorem 3.1 and Fact 3.2)

to make the strong unfoldability of κ indestructible by any κ-closed, κ+-c.c. forcing

notion. Let V be the resulting new ground model. Note that in V we still have

2κ = κ+, since the lottery preparation satisfies the κ-c.c. and has size κ. Furthermore,

we have κ<κ = κ since κ is in particular strongly inaccessible.

Now, let G be Q-generic over V. By Lemma 3.1, κ is still strongly unfoldable

in V[G] and therefore, by Theorem 2.5, V[G] |= s(κ) ≥ κ+. Furthermore, V[G] |=
b(κ) = tcl(κ) = λ by Lemma 3.1 (ii). It remains to find a splitting family of cardinality

κ+ in V[G].

Decompose G as G = 〈yα : α ∈ κ+〉 ∗ H, where 〈yα : α ∈ κ+〉 is a Cκ+-generic

sequence of κ-reals over V and H is M(C)λ-generic over V[〈yα : α ∈ κ+〉]. We

show that the set of κ-Cohen reals {yα : α ∈ κ+} is a splitting family in V[G]. In

V[〈yα : α ∈ κ+〉], let ẋ be a nice M(C)λ-name for a κ-real.

Claim 3.1. There exists γ ∈ κ+ such that ẋ ∈ V[〈yα : α ∈ γ〉].

Proof. By induction on λ. Assume the claim holds for nice M(C)α-names for every

α ∈ λ. By definition, ẋ is of the form ẋ =
!

ξ∈κ{ξ̌} × Aξ, where Aξ is an antichain

and for each 〈ā, C̄〉 ∈ Aξ and each ζ ∈ dom(C̄), C̄(ζ) is a nice M(C)ζ-name. Since

the Aξ have size ≤κ by the κ+-c.c. and since for each 〈ā, C̄〉 ∈ Aξ : |dom(C̄)| < κ,

we have that

X =
)

ξ∈κ
〈ā,C̄〉∈Aξ

range(C̄)

has size at most κ. By the induction hypothesis and since κ+ is regular, there is a

δ ∈ κ+ such that every Ċ ∈ X already exists in V[〈yα : α ∈ δ〉]. Decompose Cκ+ as

Cδ × Cκ+\δ. Since Cκ+\δ is κ-closed, it adds no new elements to [κ]<κ and to <κX,

and hence, every element of ẋ already exists in V[〈yα : α ∈ δ〉]. Finally, since |ẋ| ≤ κ

and since Cκ+\δ satisfies the κ+-c.c., there is an S ∈ V[〈yα : α ∈ δ〉] with |S| ≤ κ

such that ẋ ⊆ S. Fact 1.4 yields ẋ ∈ V[〈yα : α ∈ γ〉] for some δ < γ < λ. ⊢Claim

By the claim, ẋ ∈ V[〈yα : α ∈ κ+ \ {γ}〉]. We show that yγ splits the κ-real

named by ẋ. Let V := V[〈yα : α ∈ κ+ \ {γ}〉] be the new ground model over which

we force with C ∗M(C)λ. To avoid confusion, we denote C-names with accents below
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the character, i.e., we let
˙
y be the canonical C-name for a κ-Cohen generic real. We

denote by
˜
ẋ the canonical C-name for ẋ ∈ V.

Assume by contradiction that there exists a C-condition p, a C-name
˙
q for an

M(C)λ-condition and some η ∈ κ such that either p ⊩C “
˙
q ⊩M(C)λ ẋ

,
\ η ⊆

˙
y” or

p ⊩C “
˙
q ⊩M(C)λ ẋ

,
∩

˙
y ⊆ η”. Since C is κ-closed, we can assume without loss of

generality that there is some ā ∈ V such that q̇ = op(ā,
˙
C̄), where

˙
C̄ is a C-name for

a sequence of names for clubs.

Let y be a κ-Cohen real over V such that p ⊆ y, i.e., such that p is in the generic

filter. Define the C-generic κ-real y′ as follows: For ζ ∈ dom(p), y′(ζ) := y(ζ) = p(ζ)

and else y′(ζ) := 1− y(ζ). Note that V[y′] = V[y] =: W.

In W, we are in one of the following two cases:

(i) Either 〈ā,
˙
C̄[y]〉 ⊩ “ẋ \ η ⊆ y” and 〈ā,

˙
C̄[y′]〉 ⊩ “ẋ \ η ⊆ y′”, or

(ii) 〈ā,
˙
C̄[y]〉 ⊩ “ẋ ∩ y ⊆ η” and 〈ā,

˙
C̄[y′]〉 ⊩ “ẋ ∩ y′ ⊆ η”.

Since the two M(C)λ-conditions 〈ā,
˙
C̄[y]〉 and 〈ā,

˙
C̄[y′]〉 are compatible by Fact 3.4

(ii) with common extension r, either r ⊩ “ẋ \ η ⊆ y and ẋ \ η ⊆ y′” if we are in

Case (i), or r ⊩ “ẋ ∩ y ⊆ η and ẋ ∩ y′ ⊆ η” if we are in Case (ii). In Case (i),

r ⊩ “ẋ \ η ⊆ y ∩ y′” and thus r ⊩ “|ẋ| < κ”. In Case (ii), r ⊩ “ẋ ∩ (y ∪ y′) ⊆ η” and

thus also r ⊩ “|ẋ| < κ”.

3.2 s(κ) = κ+ < b(κ) at Many κ Simultaneously

While the global results in the next chapter will deal with all regular κ simultaneously,

which necessitates the use of a product forcing, the situation here is somewhat more

relaxed: We are only dealing with strongly unfoldable cardinals, and these are ‘spread

out’, in the sense that the stage of the forcing construction dealing with some strongly

unfoldable κ is small enough to not interfere with the situation at larger strongly

unfoldable cardinals: Note that if κ < κ′ are strongly unfoldable, we cannot force

b(κ) ≥ κ′ without destroying even the strong inaccessibility of κ′. The following

lemma shows that the strong unfoldability of κ′ is preserved if we act responsibly and

force b(κ) < κ′. It is very likely folklore.3

Lemma 3.2. Let κ be a strongly unfoldable cardinal and Q ∈ Hκ a forcing notion.

Then, κ remains strongly unfoldable in any Q-generic extension.

3A sketch of the argument can be found in [26, pp. 1227-1228].

37



Proof. This essentially follows from a simplified version of the proof of Theorem 3.1.

Let θ be any ordinal and G a Q-generic filter over the ground model V. We show

that κ is θ-strongly unfoldable in V[G], using Fact 3.3. Thus, let A be a subset of κ

in V[G] that we need to put into a κ-model with a θ-strong unfoldability embedding.

Let Ȧ be a nice Q-name for A and note that |trcl(Ȧ)| = κ. Choose any regular

λ > κ and let X ≺ Hλ be an elementary submodel such that Hκ∪ trcl(Ȧ)∪{κ} ⊆ X,

|X| = κ and so that <κX ⊆ X. Note that this is possible because |Hκ| = 2<κ = κ.

Let π : X → M be the Mostowski collapse of X. Note that M is a κ-model and that

π|Hκ∪{Ȧ} = id, giving Q, Ȧ ∈ M . We can thus directly force with Q over M using G

to obtain the κ-model M [G] containing A.

Fix some θ-strong unfoldability embedding j : M → N . Since j has critical point κ

and N contains Vθ, j|Hκ = id and thus Q ∈ N . The embedding j : M → N therefore

trivially lifts to j : M [G] → N [G] and since G ∈ N [G] : V[G]θ ⊆ Vθ[G] ⊆ N [G].

As stated before, we would like to control cardinal characteristics at all regular κ

simultaneously, not just at a set of regular κ. While the simple method of globally

separating s(κ) and b(κ) presented below does not quite work for all strongly unfold-

able κ simultaneously – strongly unfoldable limits of strongly unfoldable cardinals

need to be left out – we still want to treat a proper class of κ. This requires the use

of class forcing, i.e., forcing with a partial order that is a proper class. Class forcing

is generally tricky since ZFC may not hold in generic extensions. However, the class

forcing we use below, as well as the class forcings we encounter in the next chapter,

behave very nicely in that regard. We will first prove the main result of this chapter,

modulo the class forcing complication, and then explain briefly why treating a proper

class instead of a set is unproblematic.

Definition 3.6. A function E is an index function if dom(E) is a class of regular

cardinals. If E is an index function and κ ∈ dom(E), we let E<κ := E|κ, E≤κ := E|κ+1

and E>κ := E|dom(E)\(κ+1).

Theorem 3.3. Assume V |= GCH. Let E be an index function defined on strongly

unfoldable cardinals such that

(i) For every κ ∈ dom(E) : κ+ < E(κ).

(ii) For every κ ∈ dom(E) :
!
{E(δ) : δ ∈ dom(E<κ)} < κ.

Then, there is a class forcing extension of V in which

∀κ ∈ dom(E) : s(κ) = κ+ < b(κ) = E(κ).
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Proof. For every κ ∈ dom(E), let µκ :=
!
{E(δ) : δ ∈ dom(E<κ)} < κ and denote

by Qκ = Cκ+ ∗ Ṁ(C)E(κ) the forcing notion developed in Theorem 3.2. Fix for every

κ ∈ dom(E) a Menas function f ′
κ for κ and let fκ := f ′

κ|(µ+
κ , κ), which clearly still has

the Menas property for κ. Let Pκ be the lottery preparation of κ relative to fκ and

note that Pκ is µ+
κ -closed, because all of its stages up to stage µ+

κ are trivial.

Define Rκ := Pκ ∗ Q̇κ. Note that if κ < κ′ are in dom(E), then Rκ ∈ Hκ′ , by the

strong inaccessibility of κ′. Furthermore, Rκ is µ+
κ -closed and satisfies the κ+-c.c..

Let E be the Easton support iteration over dom(E) of the Rκ, i.e., at stage α we

force with Rα iff α ∈ dom(E) and with the trivial forcing notion otherwise. Now, for

any κ ∈ dom(E), E is forcing equivalent to the three step iteration E<κ ∗ Ṙκ ∗ Ėtail,

where E<κ = E|κ is in Hκ, Ṙκ is an E<κ-name for Rκ in the E<κ-generic extension and

Ėtail is a (E<κ ∗ Ṙκ)-name such that ⊩E<κ∗Ṙκ
“Ėtail is the Easton support iteration of

the Rκ over dom(E>κ)”. Since Ėtail only forces with necessarily E(κ)+-closed forcing

notions, we have ⊩E<κ∗Ṙκ
“Ėtail is E(κ)+-closed” (cf. [10, Proposition 7.12]).

Let G be some E-generic filter and split G as G<κ ∗H ∗Gtail. Since E<κ ∈ Hκ, it

follows from Lemma 3.2 that κ remains strongly unfoldable in V[G<κ]. The equality

2κ = κ+ is clearly also preserved. Thus, by Theorem 3.2, V[G<κ ∗H] |= s(κ) = κ+ <

b(κ) = E(κ) = 2κ. Since Ėtail[G<κ ∗H] is E(κ)+-closed, this is preserved in V[G].

The reason this works in case dom(E) is a proper class instead of a set, is that

E is a progressively closed iteration: Denoting by Ω the class of ordinals, an ordinal

length product Πξ∈ΩQξ or an ordinal length iteration 〈〈Pξ : ξ ∈ Ω〉, 〈Q̇ξ : ξ ∈ Ω〉〉
is progressively closed iff for every ordinal α, there is some ordinal β such that for

all ξ ≥ β, Qξ is α-closed (in the case of products), or ⊩Pξ
“Q̇ξ is α-closed” (in the

case of iterations). Intuitively, such products and iterations behave nicely because

every initial segment of the universe is only affected by a set-sized segment of the

product/iteration. For the details, see [34].
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Chapter 4

Generalized Tower Spectra

While the content of the previous chapters has, to some extent, already intersected

with the question of whether towers of certain heights exist, that question will be

the focus of this final chapter. The results presented here also constitute the main

focus of my thesis work and will appear in the Journal of Symbolic Logic. Apart from

Theorem 4.4, they deal with sp(t(κ)) at all regular κ simultaneously. As explained

on the previous page, we can ignore the resulting class forcing complication since all

the forcing notions used will be progressively closed Easton products.

4.1 Globally Small Tower Spectra

4.1.1 In the Easton Model

We begin by showing that sp(t(κ)) = {κ+} is consistent globally with an arbitrarily

large generalized continuum 2κ. In fact, this holds in the Easton model, where the

class function κ → 2κ can realize any pattern permitted by König’s Theorem. The

argument used here – an isomorphism of names – serves as an easy blueprint for the

more involved isomorphism-of-names-arguments required in the later results.

Definition 4.1. Recall that E is an index function iff dom(E) is a class of regular

cardinals (cf. Definition 3.6). An index function E is an Easton function if for every

κ ∈ dom(E), E(κ) is a cardinal with cf(E(κ)) > κ and such that κ < κ′ =⇒ E(κ) ≤
E(κ′).

If there is a forcing notion Pκ for each κ ∈ dom(E), we can define the Easton

product P(E) of the Pκ as the product with Easton support over dom(E) of the Pκ.
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Thus, P(E) consists of conditions of the form p = 〈p(κ) : κ ∈ dom(E)〉, where for

each regular cardinal γ : |{κ ∈ dom(E) : p(κ) ∕= }∩ γ| < γ. Recall that the support

of p is the set supp(p) = {κ ∈ dom(E) : p(κ) ∕= }. It is clear that P(E) is isomorphic

to P(E≤κ)× P(E>κ).

Definition 4.2. Let E be an Easton function. Easton forcing relative to E is the

Easton product of the forcing notions Fn<κ(E(κ)× κ, 2) over all κ ∈ dom(E).

It is well-known and easy to check that for each κ ∈ dom(E) : P(E≤κ) satisfies

the κ+-c.c. and P(E>κ) is κ+-closed, provided that 2<κ = κ.

Theorem 4.1. LetV |= GCH, let E be an Easton function and denote Easton forcing

relative to E by P(E). Then, in any P(E)-generic extension of V:

∀κ ∈ dom(E) : sp(t(κ)) = {κ+} and 2κ = E(κ).

Proof. The second equality is well-known. Fix κ ∈ dom(E) and let G be P(E) generic

over V. Assume by contradiction that there exists a κ-tower 〈aξ : ξ ∈ λ〉 of length

λ ≥ κ++ in V[G]. We can assume that 〈aξ : ξ ∈ λ〉 is strictly ⊇∗-descending,

by extracting such a subsequence. Decompose P(E) as P(E≤κ) × P(E>κ) and G =

G≤κ × G>κ accordingly. Since P(E>κ) is κ+-closed, the GCH at δ ≤ κ still holds in

V[G>κ] and (P(E≤κ))V[G>κ] = (P(E≤κ))V. We designate V[G>κ] as the new ground

model.

For each ξ ∈ κ++, let ȧξ be a nice P(E≤κ)-name for aξ and let p0 ∈ G≤κ be a

P(E≤κ)-condition such that ∀ξ < ξ′ < κ++ : p0 ⊩P(E≤κ) “ȧξ ⊋∗ ȧξ′”.

Any nice P(E≤κ)-name ẋ is of the form ẋ =
!

α∈κ{α̌}×Aα(ẋ), where Aα(ẋ) is an

antichain in P(E≤κ). Since P(E≤κ) satisfies the κ+-c.c., the set

Sδ(ẋ) :=
)

α∈κ
p∈Aα(ẋ)

dom(p(δ)) ∪ dom(p0(δ))

has cardinality at most κ for every δ ∈ dom(E≤κ), and thus the same holds for the

set S(ẋ) :=
!

δ∈dom(E≤κ) S
δ(ẋ).

By applying the ∆-system Lemma, which requires the GCH at κ, to the family

{S(ȧξ) : ξ ∈ κ++}, we find some X ⊆ κ++ of cardinality κ++ and a sequence 〈Rδ : δ ∈
dom(E≤κ)〉 such that for all ξ ∕= ξ′ ∈ X and all δ ∈ dom(E≤κ) : Sδ(ȧξ)∩Sδ(ȧξ′) = Rδ.

Note that dom(p0(δ)) ⊆ Rδ. Since Sδ(ȧξ) has cardinality ≤κ and since κκ = κ+, we

find by the pigeonhole principle some X ′ ⊆ X of cardinality κ++ such that |Sδ(ȧξ) \
Rδ| = |Sδ(ȧξ′) \Rδ| for all ξ ∕= ξ′ ∈ X ′ and δ ∈ dom(E≤κ).
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Fix some ξ0 ∈ X ′ and choose for each ξ ∈ X ′ and each δ ∈ dom(E≤κ) a permuta-

tion of E(δ) × δ of order 2 that maps Sδ(ȧξ) to Sδ(ȧξ0) and fixes everything besides

Sδ(ȧξ)∪ Sδ(ȧξ0) \Rδ. Denote by ϕδ
ξ the automorphism of Fn<δ(E(δ)× δ, 2) that this

permutation induces. By applying these automorphisms coordinate-wise, we obtain

automorphisms of P(E≤κ), which we denote by ϕξ. Since we chose permutations fix-

ing the Rδ, we have ϕξ(p0) = p0. The automorphisms ϕξ extend to P(E≤κ)-names in

the obvious way.

Note that ϕξ(ȧξ) is a nice name with S(ϕξ(ȧξ)) ⊆ S(ȧξ0). By counting, we see

that there are at most κ+ many nice names ẋ with S(ẋ) ⊆ S(ȧξ0). Therefore, there

exists X ′′ ⊆ X ′ of cardinality κ++ and a nice name ẋ such that ϕξ(ȧξ) = ẋ for every

ξ ∈ X ′′.

Now, fix ξ < ξ′ ∈ X ′′ \ {ξ0} and define the following automorphism of P(E≤κ):

χ := ϕξ ◦ ϕξ′ ◦ ϕξ.

Note that χ(ȧξ) = ȧξ′ , that χ(ȧξ′) = ȧξ and that χ(p0) = p0. By assumption,

p0 ⊩P(E≤κ) ȧξ ⊋∗ ȧξ′ . Thus, χ(p0) ⊩χ(P(E≤κ)) χ(ȧξ) ⊋∗ χ(ȧξ′), which implies that

p0 ⊩ ȧξ′ ⊋∗ ȧξ and ȧξ ⊋∗ ȧξ′ ,

a contradiction.

4.1.2 With Arbitrarily Large MAD Spectra

The above result can be generalized to show that consistently, the κ-tower spectrum

equals {κ+} for all regular κ, while the κ-MAD spectrum is arbitrarily large. More

precisely, we prove the following:

Theorem 4.2. Let V |= GCH and let E be an index function such that for every

κ ∈ dom(E), E(κ) is a closed set of cardinals with minE(κ) ≥ κ+, cf(maxE(κ)) > κ

and such that κ < κ′ =⇒ maxE(κ) ≤ maxE(κ′). There is a forcing extension of V

in which

∀κ ∈ dom(E) : sp(t(κ)) = {κ+}, E(κ) ⊆ sp(a(κ)) and 2κ = maxE(κ).

This is based on a construction by Bağ, Fischer and Friedman [2]. As is shown

in that paper, the same construction allows for more accurate control of sp(a(κ)) by

restricting the domain of E to successors of regular cardinals together with ℵ0, and

the range of E to so-called κ-Blass spectra. While the definition of a κ-Blass spectrum

is not necessary for our purposes, we give it for the sake of completeness.
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Definition 4.3 ([2], Definition 2.1). A κ-Blass spectrum is a set A of cardinals

satisfying minA = κ+, ∀µ ∈ A : [cf(µ) ≤ κ =⇒ µ+ ∈ A] and γ ∈ A for every

cardinal κ+ ≤ γ ≤ |A|.

Corollary 4.1 (GCH). If E is defined on successors of regular cardinals together with

ℵ0, and E(κ) is a κ-Blass spectrum for every κ ∈ dom(E), we consistently have

∀κ ∈ dom(E) : sp(t(κ)) = {κ+} and sp(a(κ)) = E(κ).

Proof of Theorem 4.2. We begin by defining the relevant forcing notion. It is essen-

tially a global version of MAD-Hechler forcing introduced in Definition 2.5.

Definition 4.4 ([2], Definition 4.2). Define for each κ ∈ dom(E) and each λ ∈ E(κ)

the following forcing notion Aκ,λ: An Aκ,λ-condition is a function p : ∆p → [κ]<κ,

where ∆p ∈ [λ]<κ. We define p′ ≤ p iff

(i) ∆p ⊆ ∆p′ ,

(ii) ∀x ∈ ∆p : p(x) ⊆ p′(x),

(iii) ∀η1 ∕= η2 ∈ ∆p : p′(η1) ∩ p′(η2) ⊆ p(η1) ∩ p(η2).

For each κ ∈ dom(E), let Aκ be the <κ-support product of the Aκ,λ over all λ ∈ E(κ).

Then, let A be the Easton product of the Aκ.

Let G be A-generic over V. It is shown in [2, Theorem 4.6 and Remark 4.7]

that for all κ ∈ dom(E) : E(κ) ⊆ sp(a(κ)) and 2κ = maxE(κ) holds in V[G].

To show the other equality, let κ ∈ dom(E) and decompose A as A>κ × A≤κ and

G = G>κ × G≤κ accordingly. As is shown in [2, Lemma 4.3], A>κ is κ+-closed and

A≤κ satisfies the κ+-c.c., which implies that the GCH at δ ≤ κ still holds in V[G>κ]

and that (A≤κ)V[G>κ] = (A≤κ)V. Let W := V[G>κ] be the new ground model.

Assume by contradiction that 〈aξ : ξ < κ++〉 is a strictly ⊇∗-descending sequence

of cofinal subsets of κ in W[G≤κ]. Let ȧξ be a nice A≤κ-name for aξ and let p0 be

such that for all ξ < ξ′ < κ++ : p0 ⊩ ȧξ ⊋∗ ȧξ′ .

In order to find the required isomorphisms, we must first extend the forcing notion

A≤κ to a larger forcing notion Q≤κ into which A≤κ completely embeds.

Definition 4.5. For every δ ∈ dom(E≤κ), let bδ := |E(δ)| and Jδ := maxE(δ), and

for every β ∈ bδ, let Qδ,β be the forcing notion Aδ,Jδ . Let Qδ be the <κ-support

product of the Qδ,β and Q≤κ the Easton product over all δ ∈ dom(E≤κ) of the Qδ.

It is easy to verify that A≤κ completely embeds into Q≤κ (see [2, Lemma 4.8]).

Thus, ∀ξ < ξ′ < κ++ : p0 ⊩Q≤κ ȧξ ⊋∗ ȧξ′ .
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Definition 4.6. Let ẋ be a nice Q≤κ-name for a subset of κ, i.e., ẋ =
!

α∈κ{α̌} ×
Aα(ẋ). For each δ ∈ dom(E≤κ) and β ∈ bδ, define the following sets:

suppδ(ẋ) :=
)

α∈κ
p∈Aα(ẋ)

supp(p(δ)) ∪ supp(p0(δ)) ∈ [bδ]≤κ

∆δ,β(ẋ) :=
)

α∈κ
p∈Aα(ẋ)

∆p(δ)(β) ∪∆p0(δ)(β) ∈ [Jδ]≤κ

By applying the ∆-system Lemma, we obtain some X ⊆ κ++ of cardinality κ++

and for each δ ∈ dom(E≤κ) a root Rδ such that for all ξ ∕= ξ′ ∈ X : suppδ(ȧξ) ∩
suppδ(ȧξ′) = Rδ. Since κκ = κ+ < κ++, we can assume without loss of generality

that for every δ ∈ dom(E≤κ), the value |suppδ(ȧξ) \Rδ| does not depend on ξ ∈ X.

Fix some ξ0 ∈ X and let ψδ
ξ be a permutation of bδ of order 2 that maps

suppδ(ȧξ) to suppδ(ȧξ0) and fixes everything outside of (suppδ(ȧξ)∪ suppδ(ȧξ0)) \Rδ.

This permutation naturally induces an automorphisms of Qδ. By applying these

automorphisms coordinate-wise, we obtain for each ξ ∈ X an automorphism of

the entire Q≤κ, which we call ψξ. It recursively extends to Q≤κ-names. Note

that ∀δ ∈ dom(E≤κ) : suppδ(ψξ(ȧξ)) = suppδ(ȧξ0), ψξ(p0) = p0 and for every

ξ′ ∈ X \ {ξ, ξ0} : ψξ(ȧξ′) = ȧξ′ .

In an abuse of notation, we assume that the sets Jδ underlying the forcing notions

Qδ,β are disjoint for different (δ, β) and apply the ∆-system Lemma to the family

-)
{∆δ,β(ψξ(ȧξ)) : δ ∈ dom(E≤κ), β ∈ bδ} : ξ ∈ X

.
.

We obtain some X ′ ⊆ X of cardinality κ++ and for each δ ∈ dom(E≤κ) and each

β ∈ bδ a root Rδ,β, i.e., we have for all ξ ∕= ξ′ ∈ X ′, every δ ∈ dom(E≤κ) and every

β ∈ bδ: ∆δ,β(ψξ(ȧξ)) ∩∆δ,β(ψξ′(ȧξ′)) = Rδ,β.

Since suppδ(ψξ(ȧξ)) = suppδ(ȧξ0), and since κκ < κ++, we can again assume

without loss of generality that the value |∆δ,β(ψξ(ȧξ)) \ Rδ,β| does not depend on

ξ ∈ X ′. We may therefore fix ξ1 ∈ X ′ and choose for each δ ∈ dom(E≤κ) and β ∈ bδ

some permutation ϕδ,β
ξ of order 2 of Jδ that maps ∆δ,β(ψξ(ȧξ)) to ∆δ,β(ψξ1(ȧξ1)), and

fixes everything except for (∆δ,β(ψξ(ȧξ))∪∆δ,β(ψξ1(ȧξ1)))\Rδ,β. This map induces an

automorphism of Qδ,β, and by applying the maps coordinate-wise, we again obtain

an automorphism of the entire Q≤κ, which we denote by ϕξ. Note that ϕξ(p0) = p0
and for every ξ′ ∈ X ′ \ {ξ, ξ1} : ϕξ(ȧξ′) = ȧξ′ .

By definition of the maps, ϕξ ◦ ψξ(ȧξ) is a nice name satisfying for every δ ∈
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dom(E≤κ) and β ∈ bδ:

suppδ(ϕξ ◦ ψξ(ȧξ)) = suppδ(ȧξ0) and ∆δ,β(ϕξ ◦ ψξ(ȧξ)) = ∆δ,β(ψξ1(ȧξ1)).

By an easy counting argument, there are at most κ+ many nice names with this

property, which implies that there exist fixed ξ ∕= ξ′ ∈ X ′ \ {ξ0, ξ1} and a nice name

ż such that ϕξ ◦ ψξ(ȧξ) = ϕξ′ ◦ ψξ′(ȧξ′) = ż.

Since we have fixed ξ and ξ′, we will from now on use the shorthands ψ :=

ψξ, ψ
′ := ψξ′ , ϕ := ϕξ, ϕ

′ := ϕξ′ . The rest of the proof consists in showing that the

automorphism

χ := ψ′ ◦ ϕ′ ◦ ψ ◦ ϕ ◦ ϕ′ ◦ ψ′ ◦ ϕ ◦ ψ ◦ ϕ ◦ ψ

satisfies χ(ȧξ) = ȧξ′ and χ(ȧξ′) = ȧξ. Unfortunately, there does not seem to be a

shorter one that works. Since χ(p0) = p0 , we obtain the contradiction

p0 ⊩Q≤κ ȧξ ⊊∗ ȧξ′ ∧ ȧξ′ ⊊∗ ȧξ,

just as in the proof of Theorem 4.1.

Definition 4.7. Let U δ := suppδ(ȧξ0), U
δ,β := ∆δ,β(ψξ1(ȧξ1)) and define the following

subsets of Q≤κ:

(i) RR := {p ∈ Q≤κ : ∀δ ∈ dom(E≤κ) ∀β ∈ bδ : supp(p(δ)) ⊆ Rδ ∧∆p(δ)(β) ⊆ Rδ,β}
(ii) RU := {p ∈ Q≤κ : ∀δ ∈ dom(E≤κ) ∀β ∈ bδ : supp(p(δ)) ⊆ Rδ ∧ ∆p(δ)(β) ⊆

U δ,β \Rδ,β}
(iii) Rξ := {p ∈ Q≤κ : ∀δ ∈ dom(E≤κ) ∀β ∈ bδ : supp(p(δ)) ⊆ Rδ ∧ ∆p(δ)(β) ⊆

∆δ,β(ȧξ) \Rδ,β}, and define Rξ′ analogously.

(iv) U := {p ∈ Q≤κ : ∀δ ∈ dom(E≤κ) : supp(p(δ)) ⊆ U δ \Rδ}
(v) Pξ := {p ∈ Q≤κ : ∀δ ∈ dom(E≤κ) : supp(p(δ)) ⊆ suppδ(ȧξ) \Rδ}, and define Pξ′

analogously.

(vi)) Sξ := {p ∈ Q≤κ : ∀δ ∈ dom(E≤κ) ∀β ∈ Rδ : supp(p(δ)) ⊆ suppδ(ȧξ) ∧∆p(δ)(β) ⊆
∆δ,β(ȧξ)}, and define Sξ′ analogously.

These sets, as well as the actions of ϕ,ψ,ϕ′ and ψ′ on them, are depicted in

Figure 4.1. Note that RR ∪ Rξ ∪ Pξ ⊆ Sξ.

Fact 4.1. The following properties are very easy to verify.

(i) ψ|RR = ψ|RU = ψ|Rξ = id, and the same for ψ′ in place of ψ.

(ii) ψ[U] = Pξ, and analogously ψ′[U] = Pξ′ .
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bδ

Jδ

RRRξ RU Rξ′

U

Pξ

Pξ′

ψ
ψ′

ϕ′ϕ

Rδ

U δ \Rδ

suppδ(aξ) \Rδ

suppδ(aξ′) \Rδ

Figure 4.1: The supports at coordinate δ ∈ dom(E≤κ) of conditions in the sets

defined in Definition 4.7, and how the maps ϕ,ψ,ϕ′ and ψ′ act on these sets. Note

that conditions in Sξ live in the union of the regions labeled Pξ,Rξ and RR (and

analogously for Sξ′).

(iii) ϕ|RR = id, and the same for ϕ′ in place of ϕ.

(iv) ϕ[RU] = Rξ, and analogously ϕ′[RU] = Rξ′ .

(v) ψ|Sξ′ = id, and analogously ψ′|Sξ = id.

(vi) ϕ|Sξ′ = id, and analogously ϕ′|Sξ = id.

(vii) ϕ|Pξ = id, and analogously ϕ′|Pξ′ = id.

Definition 4.8. Let δ ∈ dom(E≤κ) and let q and q′ be Qδ-conditions such that for all

β ∈ bδ : ∆q(δ)(β) ∩∆q′(δ)(β) = ∅. We define the condition q + q′ := 〈q(δ)(β)∪ q′(δ)(β) :

β ∈ bδ〉.
Furthermore, if p and p′ are Q≤κ conditions such that for all δ ∈ dom(E≤κ) and

all β ∈ bδ : ∆q(δ)(β) ∩∆q′(δ)(β) = ∅, we define

p⊕ p′ := 〈p(δ) + p′(δ) : δ ∈ dom(E≤κ)〉.

Fact 4.2. For every θ ∈ {ψ,ϕ,ψ′,ϕ′} : θ(p⊕ p′) = θ(p)⊕ θ(p′).

Recall that the nice name ż is of the form ż =
!

α∈κ{α̌}× Aα(ż). Let α ∈ κ and

q ∈ Aα(ż). By construction, for every δ ∈ dom(E≤κ) : supp(q(δ)) ⊆ U δ. We can

therefore decompose q as q = q̄⊕ u, where for every δ ∈ dom(E≤κ) : supp(q̄(δ)) ⊆ Rδ

and supp(u(δ)) ⊆ U δ \ Rδ. Again by construction, we have for every β ∈ bδ :
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∆q(δ)(β) ⊆ U δ,β. We can thus further decompose q̄ as qR ⊕ qU, where ∆qR(δ)(β) ⊆ Rδ,β

and ∆qU(δ)(β) ⊆ U δ,β \Rδ,β.

This gives us a decomposition q = qR ⊕ qU ⊕ u, where qR ∈ RR, qU ∈ RU and

u ∈ U.

Lemma 4.1. Define the automorphism

χ̄ := ψ ◦ ϕ ◦ ϕ′ ◦ ψ′ ◦ ϕ ◦ ψ,

i.e., we have χ = ψ′ ◦ ϕ′ ◦ χ̄ ◦ ϕ ◦ ψ. Then, χ̄|Aα(ż) = id for every α ∈ κ.

Proof. Let α ∈ κ and q ∈ Aα(ż). We decompose q = qR ⊕ qU ⊕ u as described above.

From Fact 4.2 it follows that χ̄(q) = χ̄(qR) ⊕ χ̄(qU) ⊕ χ̄(u), and it therefore suffices

to show that qR, qU and u are fixed by χ̄. We use Fact 4.1.

Claim 4.1. χ̄(qR) = qR.

Proof. This is clear, since all of ψ,ϕ,ψ′ and ϕ′ are the identity on RR, by (i). ⊢Claim

Claim 4.2. χ̄(qU) = qU.

Proof. Firstly, ψ(qU) = qU by (i). Next, ϕ(qU) ∈ Rξ by (iv). Thus, ϕ(qU) is fixed by

the next two automorphisms ψ′ and then ϕ′, by (i) and (vi), respectively. Then we

again apply ϕ to get ϕ(ϕ(qU)) = qU. Finally, qU is fixed by ψ by (i). ⊢Claim

Claim 4.3. χ̄(u) = u.

Proof. Firstly, ψ(u) ∈ Pξ by (ii). Thus, ψ(u) is fixed by ϕ by (vii), by ψ′ by (v), by

ϕ′ by (vi) and then again by ϕ by (vii). The final application of ψ gives ψ(ψ(u)) = u.

⊢Claim

This finishes the proof of Lemma 4.1.

We are now ready to prove that χ does what we want it to do.

Lemma 4.2. The automorphism

χ := ψ′ ◦ ϕ′ ◦ ψ ◦ ϕ ◦ ϕ′ ◦ ψ′ ◦ ϕ ◦ ψ ◦ ϕ ◦ ψ

satisfies χ(ȧξ) = ȧξ′ and χ(ȧξ′) = ȧξ.
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Proof. We begin with the first equality. We have ȧξ =
!

α∈κ{α̌} × Aα(ȧξ) and thus,

χ(ȧξ) =
!

α∈κ{α̌} × χ[Aα(ȧξ)]. Therefore, we must show that for every α ∈ κ :

χ[Aα(ȧξ)] = Aα(ȧξ′).

Let α ∈ κ. First, we deal with χ[Aα(ȧξ)] ⊆ Aα(ȧξ′). Thus, let p ∈ Aα(ȧξ). We

know that ϕ ◦ ψ(ȧξ) = ż, which implies that q := ϕ ◦ ψ(p) ∈ Aα(ż). We also know

that ψ′ ◦ϕ′(ż) = ȧξ′ , and therefore ψ′ ◦ϕ′(q) ∈ Aα(ȧξ′). Since χ̄(q) = q by Lemma 4.1,

we indeed obtain

χ(p) = ψ′ ◦ ϕ′ ◦ χ̄ ◦ ϕ ◦ ψ(p) ∈ Aα(ȧξ′).

The reverse inclusion Aα(ȧξ) ⊇ χ−1[Aα(ȧξ′)] follows from essentially the same proof:

Note that χ−1 = ψ ◦ϕ ◦ χ̄−1 ◦ϕ′ ◦ψ′, and by Lemma 4.1, χ̄−1 is the identity on Aα(ż)

as well.

To show the second equality, i.e., χ(ȧξ′) = ȧξ, we again fix α ∈ κ and show

χ[Aα(ȧξ′)] = Aα(ȧξ). Here, we have to deal with the entire χ at once, we again use

Fact 4.1. To verify the direction ”⊆”, let p′ ∈ Aα(ȧξ′). Since p′ ∈ Sξ′ , we have

ψ(p′) = p′ by (v) and ϕ(p′) = p′ by (vi). The next two automorphisms map p′ to

ϕ′(ψ′(p′)), which is equal to a condition q ∈ Aα(ż) since ϕ′(ψ′(ȧξ′)) = ż. Then, q is

mapped to ψ(ϕ(q)), which is some p ∈ Aα(ȧξ) because ψ(ϕ(ż)) = ȧξ. The last two

automorphisms ϕ′ and ψ′ fix p, again by (v) and (vi).

Finally, the proof of the reverse inclusion χ[Aα(ȧξ′)] ⊇ Aα(ȧξ) is analogous and

left as an exercise to the reader.

4.2 Globally Large Tower Spectra

Next, we show that arbitrarily large tower spectra at all regular cardinals simultane-

ously are consistent. In fact, we show that sp(tcl(κ)) can be arbitrarily large globally.

The forcing notion we use is similar to a part of the forcing notion developed by

Hechler in [23], designed to force the existence of many ω-towers.

Theorem 4.3. Let V |= GCH and let E be an Easton function. There is a forcing

extension of V in which

∀κ ∈ dom(E) : sp(t(κ)) = sp(tcl(κ)) = [κ+, 2κ], where 2κ = E(κ).

Here, [κ+, 2κ] denotes the set of regular cardinals between κ+ and 2κ.
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Proof. We begin by defining the relevant forcing notion.

Definition 4.9. Define for each κ ∈ dom(E) the set Iκ := {〈κ, ξ〉 : ξ ∈ E(κ)}, which
serves as an index set. The purpose of the entry κ is to ensure that the different Iκ

are disjoint.

For each κ ∈ dom(E), let Tκ consist of conditions q : ∆q × ηq → 2, where

∆q ∈ [Iκ]<κ and ηq ∈ κ \ {0}. Let q′ ≤ q iff

(i) q ⊆ q′,

(ii) For all ξ < ξ′ with 〈κ, ξ〉, 〈κ, ξ′〉 ∈ ∆q and for all ηq ≤ µ < ηq
′
: q′(〈κ, ξ〉, µ) =

0 =⇒ q′(〈κ, ξ′〉, µ) = 0.

Let T be the Easton product of the Tκ.

Lemma 4.3. Let κ ∈ dom(E) and decompose T as T≤κ×T>κ. Then, T>κ is κ+-closed

and T≤κ satisfies the κ+-c.c..

Proof. The first statement is easy to verify. To show the second statement, let A

be a κ+-sized set of T≤κ-conditions. For each p ∈ A, let Sp :=
!
{∆p(δ) × ηp(δ) : δ ∈

supp(p)}. Note that Sp has cardinality <κ. By the ∆-system Lemma, we obtain some

A′ ⊆ A of cardinality κ+ and for each δ ∈ dom(E≤κ) some Rδ ∈ [Iδ]<δ and some

rδ ∈ δ, such that for all these δ and all p ∕= p′ ∈ A′ : (∆p(δ)× ηp(δ))∩ (∆p′(δ)× ηp
′(δ)) =

Rδ×rδ. Note that the set C := {δ : Rδ×rδ ∕= ∅} has cardinality <κ. For each δ ∈ C,

there is at most one p ∈ A′ with ηp(δ) ∕= rδ. By removing these <κ many conditions,

we can assume that no such p exist in A′.

The set
!
{Rδ×rδ : δ ∈ C} has cardinality <κ. By the GCH, we have 2<κ = κ, and

we can therefore assume that for all p, p′ ∈ A′ and all δ ∈ dom(E≤κ), the functions

p(δ) and p′(δ) agree on the intersection of their domains. It is now easy to verify that

the conditions in A′ are pairwise compatible.

It follows by standard methods that

Corollary 4.2. T preserves cofinalities and hence cardinals.

See, for example, the proof of Easton’s Theorem in [29, Ch. VIII, Lemma 4.6].

Proposition 4.1. Let V |= GCH and let G be T-generic over V. Then, for any

κ ∈ dom(E) and any regular λ ∈ [κ+, E(κ)], there is a κ-tower of height λ consisting

of clubs in V[G].
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Proof. Let κ ∈ dom(E) and λ ∈ [κ+, E(κ)]. As before, decompose T as T≤κ × T>κ

and G = G≤κ×G>κ accordingly. Since T>κ is κ+-closed, the GCH at δ ≤ κ still holds

in V[G>κ] and (T≤κ)V[G>κ] = (T≤κ)V. We work in W := V[G>κ].

Since κ and λ are fixed and since we are only interested in the κ-th coordinate of

each T≤κ-condition p, define for notational simplicity for each p ∈ T≤κ the following

abbreviation qp:

(i) ∀ξ ∈ E(κ) ∀α ∈ κ : qp(ξ,α) := p(κ)(〈κ, ξ〉,α)
(ii) ∆qp := ∆p(κ)

(iii) ηqp := ηp(κ).

In W[G≤κ], define for each ξ ∈ E(κ) the κ-real gξ := {α ∈ κ : ∃p ∈ G≤κ :

qp(ξ,α) = 1}. We assume that λ < E(κ) and define aξ := cl(gξ \ gλ) for all ξ < λ. We

show that the sequence 〈aξ : ξ ∈ λ〉 is a κ-tower of height λ in W[G≤κ]. If λ = E(κ),

it follows by a very similar but simplified argument that setting aξ := cl(gξ) yields a

κ-tower of height E(κ).

It is easy to see that 〈gξ : ξ ∈ E(κ)〉 is well-ordered by ⊇∗, and therefore, 〈aξ : ξ ∈
λ〉 is as well. In order to show that 〈aξ : ξ ∈ λ〉 does not have a pseudo-intersection

in W[G≤κ], let ẋ be a T≤κ-name for a subset of κ and p0 ∈ G≤κ a condition such that

p0 ⊩ “|ẋ| = κ”. For each α ∈ κ, let Aα be a maximal antichain deciding ”α ∈ ẋ”.

By the κ+-c.c. of T≤κ, the set ∆ :=
!
{∆qp : p ∈ Aα, α ∈ κ} has cardinality at most

κ. Thus, by regularity of λ, there exists 〈κ, ξ0〉 ∈ Iκ such that ξ < ξ0 < λ for every

ξ < λ with 〈κ, ξ〉 ∈ ∆. We show that for every ν ∈ κ, the set of conditions forcing

”ẋ \ ν ⊈ ȧξ0” is dense below p0.

Let p ≤ p0. By extending p, we can assume that 〈κ,λ〉 ∈ ∆qp . Since p ⊩ “|ẋ| =
κ”, there exists α0 > max{ηqp , ν} and p̄ ≤ p with p̄ ⊩ α̌0 ∈ ẋ. Therefore p̄ is

compatible with some r ∈ Aα0 via some common extension s. In particular, p and r

are compatible via s. Without loss of generality, we can assume that 〈ξ0,α0〉, 〈λ,α0〉 ∈
dom(qs).

Note that for all ξ0 ≤ ξ < λ and all max{ηqp , ν} ≤ α ≤ α0 with 〈ξ,α〉 ∈ dom(qs) :

〈ξ,α〉 /∈ dom(qp) ∪ dom(qr) since α ≥ ηqp and by the choice of ξ0. Therefore, we can

set s̄ equal to s except that for all such ξ and α : qs̄(ξ,α) := min{qs(ξ,α), qs(λ,α)}.
It follows that s̄ is a common extension of p and r, and for every max{ηqp , ν} ≤ α ≤
α0 : s̄ ⊩ “α̌ ∈ ġξ0 =⇒ α̌ ∈ ġλ”. Thus, s̄ ⊩ “α̌0 ∈ ẋ \ cl(ġξ0 \ ġλ)”, finishing the proof

of the proposition.

Lastly, it can be checked easily, by counting nice T≤κ-names for subsets of κ, that

∀κ ∈ dom(E) : 2κ = E(κ) in every T-generic extension of V |= GCH.
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Corollary 4.3. In the above extension, b(κ) = κ+ for every κ ∈ dom(E).

Proof. For uncountable κ, this follows from Lemma 2.10. In the case κ = ω, it can

easily be seen that the forcing notion Tω densely embeds into the part of the forcing

notion introduced by Hechler [23] that deals with towers. The first author, Koelbing

and Wohofsky [16, Corollary 5.1] have shown that the latter forces b(ω) = ω1, by

showing that it decomposes as a finite support iteration of Mathias forcings that

preserve the unboundedness of ground model scales.

4.3 A Locally Bounded Tower Spectrum

Our final result establishes that the κ-tower spectrum may consistently have any

upper bound below 2κ, where this upper bound is given by b(κ).

Theorem 4.4. Assume V |= GCH. Let κ < β be regular and let µ be such that

cf(µ) ≥ β. There is a generic extension of V in which

sp(t(κ)) ⊆ [κ+, b(κ)], where b(κ) = β and 2κ = µ.

Proof. We begin by briefly sketching the idea of the proof. We force b(κ) = β

and 2κ = µ using a non-linear iteration of κ-Hechler forcing. Non-linear iterations

of Hechler forcing at ω were introduced by Hechler in [24] and generalized to the

uncountable by Cummings and Shelah in [11]. The strategy is to force the existence

of a cofinal embedding from some partial orderQ into the partial order (κκ,≤∗), where

an order-preserving embedding f : Q → Q′ is cofinal iff ∀p ∈ Q′ ∃q ∈ Q : p ≤Q′ f(q).

By choosing a Q with appropriate bounding and dominating properties, one obtains

the desired values of b(κ) and d(κ) in the extension. These properties are formalized

by the following definition.

Definition 4.10. Let Q be a partially ordered set. We say that B ⊆ Q is unbounded

iff ∀q ∈ Q ∃p ∈ B : p ≰Q q. Let b(Q) be the minimal cardinality of an unbounded

subset of Q and let d(Q) be the minimal cardinality of a cofinal (or dominating)

subset of Q. Thus, b(κ) = b((κκ,≤∗)) and d(κ) = d((κκ,≤∗)).

The following fact is easy to check.

Fact 4.3. If f : Q → Q′ is a cofinal embedding, then b(Q′) = b(Q) and d(Q′) = d(Q).
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Therefore, by choosing a Q satisfying b(Q) = β and d(Q) = µ in the forcing

extension, we will obtain b(κ) = β and 2κ ≥ d(κ) = µ. The reverse inequality 2κ ≤ µ

will follow by counting nice names.

We then show that there are no κ-towers of height greater than β in the forcing

extension, again due to an isomorphism of names. For this argument to succeed, we

first use a preparatory forcing to obtain a particular partial order, one in which every

element only lies above few others. This complication stems from the fact that we

need to iterate along a well-founded partial order, where Q is well-founded if every

C ⊆ Q contains a minimal element. While it is folklore that every partial order

contains a cofinal, well-founded subset, choosing any such subset in our proof will not

yield the upper bound we aim for. Note however that the preparatory forcing step

could be skipped if we were to start with an inaccessible β.

Lemma 4.4. Assume β is regular, β<β = β and µ is such that cf(µ) ≥ β. Consider

the partial order ([µ]<β,⊆). There is a β-closed, β+-c.c. forcing notion P that adds a

cofinal subset Q∗ ⊆ [µ]<β, satisfying

(i) Q∗ is well-founded,

(ii) For all x ∈ Q∗ : |{y ∈ Q∗ : y ⊆ x}| < β,

(iii) b(Q∗) = β,

(iv) d(Q∗) = |Q∗| = µ.

Proof. Let p be a P-condition iff p is a well-founded subset of [µ]<β of cardinality <β.

The order is given by

q ≤ p : ⇐⇒ p ⊆ q and ∀x ∈ p ∀y ∈ q \ p : y ⊈ x.

Claim 4.4. P is β-closed and satisfies the β+-c.c..

Proof. Checking the first part is routine. For the second part, let A ∈ [P]β+
. Applying

the ∆-system Lemma to the family {
!

p : p ∈ A} yields some A′ ⊆ A of cardinality

β+ and a root R ∈ [µ]<β. There are at most 2<β = β many subsets of R, and since

β<β = β, we can assume that p ∩ P(R) does not depend on p ∈ A′. It follows that

the p ∈ A′ are pairwise compatible. ⊢Claim

Now, let H be P-generic over V and define Q∗ :=
!

H. By the above claim, car-

dinalities and cofinalities are preserved in V[H] and we have ([µ]<β)V[H] = ([µ]<β)V.

It is easy to see that for every x ∈ [µ]<β, the set Dx := {p ∈ P : ∃y ∈ p : y ⊇ x} is

open dense in P, by adding
!

p ∪ x to the p in question. Thus, Q∗ is indeed cofinal
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in [µ]<β. Well-foundedness of Q∗ follows from H being directed. By the same reason,

we have that for every x ∈ Q∗ : {y ∈ Q∗ : y ⊆ x} ⊆ p, where p ∈ H is any condition

containing x. Thus |{y ∈ Q∗ : y ⊆ x}| < β.

It remains to show (iii) and (iv). In order to verify b(Q∗) = β and d(Q∗) = µ, it

suffices, by Fact 4.3, to verify b(([µ]<β,⊆)) = β and d(([µ]<β,⊆)) = µ in V[H]. To

check the first statement, note that by regularity of β, every B ⊆ [µ]<β of cardinality

<β is bounded. On the other hand, for any X ∈ [µ]β, the set {{η} : η ∈ X} is

unbounded, which yields b(([µ]<β,⊆)) = β.

Similarly, any D ⊆ [µ]<β of cardinality <µ cannot be dominating since
!

D ∕= µ.

This gives us d([µ]<β) ≥ µ. The reverse inequality holds because |[µ]<β| = µ, which

follows by the assumption cf(µ) ≥ β and by the GCH in V. Since Q∗ is itself cofinal,

this also yields |Q∗| = µ.

We now fix some P-generic H and designateW := V[H] as the new ground model.

Note that since P is β-closed, the GCH still holds at all cardinals below β and ρκ = ρ

for all ρ with cf(ρ) > κ.

Definition 4.11 (see [11], Theorem 1). Let Q be any well-founded partially ordered

set. Extend Q to Q ∪ {top}, where ∀a ∈ Q : top > a. Denote by Qa the partial

order Qa := {b ∈ Q : b < a}, so that Q = Qtop. By induction, we define for each

a ∈ Q ∪ {top} the forcing notion D(Qa). Assume D(Qb) is already defined for all

b < a. We let p be a D(Qa)-condition iff

(i) p is a function with dom(p) ∈ [Qa]
<κ.

(ii) For each b ∈ dom(p) : p(b) = 〈s, ḟ〉, where s ∈ <κκ and ḟ is a nice D(Qb)-name

for an element of κκ. That is, ḟ is of the form ḟ =
!

〈α1,α2〉∈κ×κ{op(α̌1, α̌2)} ×
A〈α1,α2〉, where A〈α1,α2〉 is an antichain in D(Qb) and ⊩D(Qb) ḟ ∈ ˇ(κκ).

Let q ≤ p iff

(a) dom(p) ⊆ dom(q),

(b) For all b ∈ dom(p), if p(b) = 〈s, ḟ〉 and q(b) = 〈t, ġ〉, then s ⊆ t and

q|Qb
⊩D(Qb)

/
∀η ∈ κ : ḟ(η) ≤ ġ(η) and

∀η ∈ dom(t) \ dom(s) : t(η) > ḟ(η).

Finally, D(Q) = D(Qtop).

Lemma 4.5. Let Q be any well-founded partial order. Then the following holds.

(i) D(Q) is κ-closed.
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(ii) D(Q) satisfies the κ+-c.c..

(iii) Let A ⊆ Q be downward-closed, i.e., for all p ∈ A and q ∈ Q : q ≤Q p =⇒ q ∈
A. Then D(A) is a complete suborder of D(Q).

(iv) Assume |Q|κ = |Q|. There are at most |Q| many nice D(Q)-names for subsets

of κ.

Proof. Parts (i) and (ii) are proved in [11, Claims 1 and 2]. Part (iii) is straightforward

to check. For part (iv), let |Q| = ρ with ρκ = ρ and let a ∈ Q ∪ {top}. Assume by

induction that for all b < a there are at most ρ many nice D(Qb)-names for subsets

of κ. In particular, there are at most ρ many nice D(Qb)-names for elements of κκ.

Since D(Qa) satisfies the κ+-c.c., the number of nice D(Qa)-names for subsets of κ

is bounded by |D(Qa)|κ. Note that |D(Qa)| ≤ |Qa|<κ · κ<κ · ρ<κ by the induction

hypothesis. This is at most ρ because Qa ⊆ Q and ρ<κ = ρ, which finally yields that

there are at most ρκ = ρ nice D(Qa)-names for subsets of κ.

Lemma 4.6 ([11], Theorem 1). Let Q be any well-founded partial order with b(Q) ≥
κ+. In any D(Q)-generic extension, Q can be cofinally embedded into (κκ,≤∗).

Corollary 4.4. Let G be D(Q∗)-generic over W, where Q∗ is from Lemma 4.4. Then

W[G] |= b(κ) = β and 2κ = d(κ) = µ.

Proof. We have |Q∗| = µ by Lemma 4.4 (iv), which implies by Lemma 4.5 (iv) that

there are at most µ many nice D(Q∗)-names for subsets of κ. Thus, W[G] |= 2κ ≤ µ.

In order to verify the remaining claims, it suffices by the above Lemma 4.6 and by

Fact 4.3 to check that b(Q∗) = β and d(Q∗) = µ still holds in W[G]. However, this

very easily follows from D(Q∗) satisfying the κ+-c.c..

Proposition 4.2. Let G be D(Q∗)-generic overW. ThenW[G] |= sp(t(κ)) ⊆ [κ+, β].

Proof. Assume towards a contradiction that 〈aξ : ξ ∈ β+〉 is a strictly ⊇∗-descending

sequence in W[G]. For each ξ ∈ β+, let ȧξ =
!

α∈κ{α̌} × Aξ
α be a nice D(Q∗)-name

for aξ. Assume p0 ∈ D(Q∗) is such that for all ξ < ξ′ < β+ : p0 ⊩D(Q∗) ȧξ ⊋∗ ȧξ′ .

Define for every ξ ∈ β+ the set

dξ :=
)

{x : x ∈ dom(p), p ∈ Aξ
α, α ∈ κ} ∪

)
{x : x ∈ dom(p0)},

which is a subset of µ of size <β. Since Q∗ is cofinal in [µ]<β, we find for each

ξ ∈ β+ some Dξ ⊇ dξ in Q∗. As noted before, the GCH holds in W below β and
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we may therefore apply the ∆-system Lemma to the family {Dξ : ξ ∈ β+} to obtain

some X ⊆ β+ of cardinality β+ and a root R. Set Q∗
ξ := {y ∈ Q∗ : y ⊆ Dξ} and

R := {y ∈ Q∗ : y ⊆ R}. Note that R is the root of the Q∗
ξ . By Lemma 4.4 (ii),

we have |Q∗
ξ | < β, and we may therefore assume by the pigeonhole principle that

∀ξ ∈ X : |Q∗
ξ | = θ < β.

Claim 4.5. There exists X ′ ⊆ X of cardinality β+ such that for all ξ, ξ′ ∈ X ′, there

is an order-preserving isomorphism ψξ,ξ′ : Q∗
ξ → Q∗

ξ′ with ψξ,ξ′ |R = id.

Proof. To see this, let L be some set of cardinality |Q∗
ξ \R| disjoint from R. For each

ξ ∈ X, we can map Q∗
ξ bijectively to L ∪ R, such that this bijection restricted to R

is the identity. This bijection induces a partial order on L ∪ R. Since there are at

most 2θ ≤ β many partial orders on L ∪ R, we find the desired X ′ as well as the

isomorphisms ψξ,ξ′ by the pigeonhole principle. ⊢Claim

Define the downward-closed partially ordered set A :=
!

ξ∈X′ Q∗
ξ . Note that by

definition of Dξ, ȧξ is a nice D(Q∗
ξ)-name and thus a nice D(A)-name. Furthermore,

p0 is a D(R)-condition. For a fixed ξ0 ∈ X ′, the isomorphism ψξ,ξ0 extends to an au-

tomorphism of order 2 of A, which we denote by ψξ. This automorphism ψξ naturally

induces an automorphism ϕξ of D(A) in the obvious way: Let a ∈ A ∪ {top} and

assume by induction that for every b < a, the isomorphism

ϕξ|D(Ab) : D(Ab) → D(Aψξ(b))

has been defined (note the abuse of notation). In particular, this isomorphism

extends to D(Ab)-names. Now let p be any D(Aa)-condition. We write for every

b ∈ dom(p) : p(b) = 〈s(b), ḟ(b)〉, and define

ϕξ|D(Aa)(p) := q, where

/
dom(q) := ψξ[dom(p)] and

∀ψξ(b) ∈ dom(q) : q(ψξ(b)) := 〈s(b),ϕξ|D(Ab)(ḟ)〉

It follows by induction that ϕξ is an automorphism and that ϕξ|D(R) = id.

Note that ϕξ(ȧξ) is a nice D(Q∗
ξ0
)-name and that by Lemma 4.5 (iv), there are

at most |Q∗
ξ0
| < β many nice D(Q∗

ξ0
)-names for subsets of κ. Thus, we can extract

X ′′ ⊆ X ′ of cardinality β+ such that ϕξ(ȧξ) is the same nice D(Q∗
ξ0
)-name for all

ξ ∈ X ′′.

Fix ξ < ξ′ ∈ X ′′ \ {ξ0} and define the automorphism χξ,ξ′ := ϕξ′ ◦ ϕξ ◦ ϕξ′ of

A. By construction, χξ,ξ′(ȧξ) = ȧξ′ , χξ,ξ′(ȧξ′) = ȧξ and χξ,ξ′(p0) = p0. Since D(A)
is a complete suborder of D(Q∗) by Lemma 4.5 (iii), we have p0 ⊩D(A) ȧξ ⊋∗ ȧξ′ ,
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which yields the contradiction p0 ⊩D(A) ȧξ′ ⊋∗ ȧξ ∧ ȧξ ⊋∗ ȧξ′ , just as in the proof of

Theorem 4.1.

Together with Lemma 2.10, the above Theorem yields the following corollary.

Corollary 4.5. Let κ < β be regular uncountable and let µ be such that cf(µ) ≥ β.

Then, consistently,

sp(tcl(κ)) = {β} and 2κ = µ.

As a final remark, note that by Lemma 2.10 and Lemma 2.11, the upper bound

given by Theorem 4.4 is tight, in the sense that there always exists a κ-tower of height

b(κ), if κ is uncountable or if b(ω) < d(ω). If both κ = ω and β = µ however, a

well-founded cofinal subset of the partial order ([β]<β,⊆) as in Lemma 4.4 is given by

the well-ordered set β, in which case we have a simple finite support, β-stage linear

iteration of Hechler forcing, and thus no ω-tower of height β = b(ω) in the extension,

by Theorem 2.3.
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